AD7943/AD7945/AD7948

FEATURES

12-Bit Multiplying DACs

Guaranteed Specifications with +3.3 V/ +5 V Supply
0.5 LSBs INL and DNL

Low Power: $5 \mu \mathrm{~W}$ typ

Fast Interface

40 ns Strobe Pulse Width (AD7943)
40 ns Write Pulse Width (AD7945, AD7948)
Low Glitch: 60 nV-s with Amplifier Connected
Fast Settling: 600 ns to $\mathbf{0 . 0 1 \%}$ with AD843

APPLICATIONS

Battery-Powered Instrumentation
Laptop Computers
Upgrades for All 754x Series DACs (5 V Designs)

GENERAL DESCRIPTION

The AD 7943, AD 7945 and AD 7948 are fast 12-bit multiplying DAC s that operate from a single +5 V supply (N ormal M ode) and a single +3.3 V to +5 V supply (Biased M ode). The AD 7943 has a serial interface, the AD 7945 has a 12-bit parallel interface, and the AD 7948 has an 8-bit byte interface. They will replace the industry-standard AD 7543, AD 7545 and AD 7548 in many applications, and they offer superior speed and power consumption performance.
The AD 7943 is available in 16-pin DIP, 16-pin SOP (Small Outline Package) and 20-pin SSOP (Shrink Small Outline Package).
The AD 7945 is available in 20-pin DIP, 20-pin SOP and 20-pin SSOP.
The AD 7948 is available in 20-pin DIP, 20-pin SOP and 20-pin SSOP.

REV. 0

[^0]FUNCTIONAL BLOCK DIAGRAMS

AD7943/AD7945/AD7948- SPECIFICATIONS ${ }^{1}$

NORMAL MODE (AD7943: $V_{D D}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V} ; \mathrm{V}_{\text {IOUT1 }}=\mathrm{V}_{\text {IOUT2 }}=A G N D=0 \mathrm{~V} ; \mathrm{V}_{\text {REF }}=+10 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX, }}$ unless otherwise noted. AD7945, AD7948: $\mathrm{V}_{D D}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V} ; \mathrm{V}_{\text {DOUT1 }}=A G N D=0 \mathrm{~V} ; \mathrm{V}_{\text {REF }}=+10 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX, }}$ unless otherwise noted.)

Parameter	B Grades ${ }^{2}$	T Grade ${ }^{2,3}$	Units	Test Conditions/Comments
ACCURACY Resolution Relative Accuracy Differential N onlinearity Gain Error $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {max }}$ Gain Temperature Coefficient ${ }^{4}$ Output Leakage C urrent Iout 1 @ $+25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {MAX }}$	$\begin{aligned} & 12 \\ & \pm 0.5 \\ & \pm 0.5 \\ & \\ & \pm 2 \\ & 2 \\ & 5 \\ & \\ & 10 \\ & 100 \end{aligned}$	$\begin{aligned} & 12 \\ & \pm 0.5 \\ & \pm 0.5 \\ & \\ & \pm 2 \\ & 2 \\ & 5 \\ & \\ & 10 \\ & 100 \end{aligned}$	Bits LSB max LSB max LSB max ppm FSR $/{ }^{\circ} \mathrm{C}$ typ ppm FSR/ ${ }^{\circ} \mathrm{C}$ max nA max nA max	$1 \mathrm{LSB}=\mathrm{V}_{\text {REF }} / 2^{12}=2.44 \mathrm{mV} \text { when } \mathrm{V}_{\text {REF }}=10 \mathrm{~V}$ All G rades Guaranteed M onotonic over Temperature See T erminology Section Typically 20 nA over T emperature
REFERENCE INPUT Input Resistance	$\begin{aligned} & 6 \\ & 12 \end{aligned}$	$\begin{aligned} & 6 \\ & 12 \end{aligned}$	$k \Omega$ min $k \Omega$ max	T ypical Input Resistance $=9 \mathrm{k} \Omega$
DIGITAL INPUTS $\mathrm{V}_{\text {INH }}$, Input High Voltage $\mathrm{V}_{\text {INL }}$, Input L ow Voltage $I_{\text {INH }}$, Input Current $\mathrm{C}_{\mathrm{IN}^{N}}$, Input C apacitance ${ }^{4}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 1 \\ & 10 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 1 \\ & 10 \end{aligned}$	V min V max $\mu \mathrm{A}$ max pF max	
$\begin{aligned} & \text { DIGITAL OUT PUT (AD } 7943 \text { SRO) } \\ & \text { Output L ow Voltage (V }{ }_{\text {OL }} \text {) } \\ & \text { Output High Voltage (V }{ }_{\text {OH }} \text {) } \end{aligned}$	$\begin{aligned} & 0.2 \\ & V_{D D}-0.2 \end{aligned}$	$\begin{aligned} & 0.2 \\ & V_{D D}-0.2 \end{aligned}$	V max V min	For 1 CMOS Load
POWER REQUIREMENTS $V_{D D}$ Range Power Supply Sensitivity ${ }^{4}$ ΔG ain/ $\Delta V_{D D}$ IDD (AD 7943) $I_{D D}(A D 7945, A D 7948)$	$\begin{aligned} & 4.5 / 5.5 \\ & -75 \\ & 5 \end{aligned}$ 5	$\begin{aligned} & 4.5 / 5.5 \\ & -75 \\ & 5 \end{aligned}$ 5	V min/V max dB typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ max	$V_{I N H}=V_{D D}-0.1 \mathrm{~V} \min , V_{I N L}=0.1 \mathrm{~V}$ max. SRO Open Circuit. No ST B Signal. Typically $1 \mu \mathrm{~A}$. T ypically $100 \mu \mathrm{~A}$ with a 1 M Hz STB Frequency. At Input Levels of 0.8 V and 2.4 V , I ID Is Typically 2.5 mA . $\mathrm{V}_{\text {INH }}=\mathrm{V}_{\mathrm{DD}}-0.1 \mathrm{~V} \min , \mathrm{~V}_{\text {INL }}=0.1 \mathrm{~V}$ max. Typically $1 \mu \mathrm{~A}$. At Input Levels of 0.8 V and $2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{DD}}$ Is T ypically 2.5 mA .

NOTES
${ }^{1}$ The AD 7943, AD 7945 and AD 7948 are specified in the normal current mode configuration and in the biased current mode for single-supply applications.
Figures 15 and 16 are examples of normal mode operation.
${ }^{2} \mathrm{~T}$ emperature ranges as follows: B Grades: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; T G rade: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{3}$ T he T Grade applies to the AD 7945 only.
${ }^{4}$ Guaranteed by design.
Specifications subject to change without notice.

SPECIFICATIONS ${ }^{1}$

BIASED MODE (AD7943: $\mathrm{V}_{D D}=+3 \mathrm{~V}$ to $+5.5 \mathrm{~V} ; \mathrm{V}_{\text {OUT1 }}=\mathrm{V}_{\text {IOUT2 }}=\mathrm{AGND}=1.23 \mathrm{~V} ; \mathrm{V}_{\text {REF }}=+0 \mathrm{~V}$ to $2.45 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted. AD7945, AD7948: $\mathrm{V}_{D D}=+3 \mathrm{~V}$ to $+5.5 \mathrm{~V} ; \mathrm{V}_{\text {IOUT1 }}=A G N D=1.23 \mathrm{~V} ; \mathrm{V}_{\text {REF }}=+0 \mathrm{~V}$ to $2.45 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$, unless otherwise noted.)

Parameter	A Grades ${ }^{2}$	Units	Test Conditions/Comments
ACCURACY Resolution Relative Accuracy Differential N onlinearity Gain Error @ $+25^{\circ} \mathrm{C}$ $T_{\text {min }}$ to $T_{\text {max }}$ G ain Temperature Coefficient ${ }^{3}$ Output Leakage C urrent I out 1 @ $+25^{\circ} \mathrm{C}$ $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ Input Resistance @ lout 2 Pin (AD 7943) @ AGND Pin (AD 7945, AD 7948)	$\begin{aligned} & 12 \\ & \pm 1 \\ & \pm 0.9 \\ & \pm 3 \\ & \pm 4 \\ & 2 \\ & 5 \\ & \\ & 10 \\ & 100 \\ & 6 \\ & 6 \end{aligned}$	Bits LSB max LSB max LSB max LSB max ppm FSR/ ${ }^{\circ} \mathrm{C}$ typ ppm FSR/ ${ }^{\circ} \mathrm{C}$ max nA max nA max $k \Omega$ min $k \Omega$ min	$\begin{aligned} & 1 \mathrm{LSB}=\left(\mathrm{V}_{\text {IOUT1 }}-\mathrm{V}_{\text {REF }} / 22^{12}=300 \mu \mathrm{~V}\right. \text { Wen } \\ & \mathrm{V}_{\text {IOUT } 1}=1.23 \mathrm{~V} \text { and } \mathrm{V}_{\text {REF }}=0 \mathrm{~V} \end{aligned}$ All G rades Guaranteed M onotonic over Temperature See T erminology Section Typically 20 nA over T emperature This Varies with DAC Input Code
DIGITALINPUTS $\mathrm{V}_{\text {INH }}$, Input H igh Voltage @ $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ $\mathrm{V}_{\text {INH, }}$, Input High Voltage @ $\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}$ $V_{\text {INL }}$, Input Low Voltage @ $V_{D D}=+5 \mathrm{~V}$ $\mathrm{V}_{I N L}$, Input Low Voltage @ $\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}$ $I_{\text {INH, }}$ Input Current $\mathrm{C}_{\text {IN }}$, Input C apacitance ${ }^{3}$	$\begin{aligned} & 2.4 \\ & 2.1 \\ & 0.8 \\ & 0.6 \\ & \pm 1 \\ & 10 \end{aligned}$	V min \vee min V max \vee max $\mu \mathrm{A}$ max pF max	
DIGITAL OUTPUT (SRO) Output Low Voltage (VoL) Output High Voltage ($\mathrm{V}_{\text {OH }}$)	$\begin{aligned} & 0.2 \\ & V_{D D}-0.2 \end{aligned}$	\checkmark max V min	For 1 CM OS Load
```POWER REQUIREMENTS \(V_{D D}\) Range Power Supply Sensitivity \({ }^{3}\) \(\Delta \mathrm{G}\) ain/ \(\Delta \mathrm{V}_{\mathrm{DD}}\) IDD (AD 7943) IDD (AD 7945, AD 7948)```	$\begin{aligned} & 3.0 / 5.5 \\ & -75 \\ & 5 \end{aligned}$	$V \min / V \max$   dB typ   $\mu \mathrm{A}$ max   $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {INH }}=\mathrm{V}_{\mathrm{DD}}-0.1 \mathrm{~V} \min , \mathrm{~V}_{\text {INL }}=0.1 \mathrm{~V}$ max. SRO Open Circuit; No ST B Signal; T ypically $1 \mu \mathrm{~A}$. Typically $100 \mu \mathrm{~A}$ with 1 MHzSTB Frequency.   $\mathrm{V}_{I N H}=\mathrm{V}_{\text {DD }}-0.1 \mathrm{~V}$ min, $\mathrm{V}_{\text {INL }}=0.1 \mathrm{~V}$ max. Typically $1 \mu \mathrm{~A}$.

## NOTES

${ }^{1}$ These specifications apply with the devices biased up at 1.23 V for single supply applications. The model numbering reflects this by means of a "-B" suffix (for example: AD 7943AN-B). Figure 17 is an example of Biased M ode Operation.
${ }^{2} \mathrm{~T}$ emperature ranges as follows: A Versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{3}$ Guaranteed by design.
Specifications subject to change without notice.

## AD7943/AD7945/AD7948

AC PERFORMANCE CHARACTERISTICS
Normal Mode (AD7943: $\mathrm{V}_{D D}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V} ; \mathrm{V}_{\text {IOUT1 }}=\mathrm{V}_{\text {IOUT2 }}=\mathrm{AGND}=0 \mathrm{~V}$. AD7945, AD7948: $\mathrm{V}_{D D}=+4.5 \mathrm{~V}$ to $+5.5 \mathrm{~V} ; \mathrm{V}_{\text {IOUT1 }}=\mathrm{AGND}$ $=0 \mathrm{~V} . \mathrm{V}_{\text {REF }}=6 \mathrm{~V} \mathrm{rms}, 1 \mathrm{kHz}$ sine wave; $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAx; }}$ DAC output op amp is AD843; unless otherwise noted.) These characteristics are included for Design Guidance and are not subject to test.

Parameter	B Grades	T Grade	Units	Test Conditions/Comments
DYNAMIC PERFORMANCE Output Voltage Settling Time	600	700	ns typ	To 0.01\% of Full-Scale Range. $\mathrm{V}_{\text {REF }}=$ +10 V; DAC L atch Alternately L oaded with All 0 s and All 1 s
D igital to A nalog G litch Impulse	60	60	nV-s typ	$M$ easured with $\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$. DAC L atch Alternately L oaded with All Os and All 1s
M ultiplying F eedthrough Error	-75	-75	dB max	DAC L atch Loaded with All Os
Output C apacitance	60	60	pF max	All 1s Loaded to D AC
	30	30	pF max	All Os L oaded to D AC
Digital F eedthrough (AD 7943)	5	5	nV-s typ	F eedthrough to the DAC Output with $\overline{\mathrm{LD} 1}$, $\overline{\mathrm{LD} 2} \mathrm{H}$ igh and Alternate L oading of All Os and All 1s into the Input Shift Register
Digital F eedthrough (AD 7945, AD 7948)	5	5	nV-s typ	F eedthrough to the DAC Output with $\overline{\mathrm{CS}}$ H igh and Alternate L oading of All Os and All 1 s to the DAC Bus
T otal Harmonic D istortion	-83	-83	dB typ	
Output N oise Spectral D ensity   @ 1 kHz	35	35	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ typ	All 1s Loaded to DAC. $V_{\text {Ref }}=0$ V. Output Op Amp Is OP07

## AC PERFORMANCE CHARACTERISTICS

Biased Mode (AD7943: $\mathrm{V}_{D D}=+3 \mathrm{~V}$ to $+5.5 \mathrm{~V} ; \mathrm{V}_{\text {IOUT1 }}=\mathrm{V}_{\text {IOUT2 }}=\mathrm{AGND}=1.23 \mathrm{~V}$. AD7945, AD7948: $\mathrm{V}_{D D}=+3 \mathrm{~V}$ to $+5.5 \mathrm{~V} ; \mathrm{V}_{\text {IOUT1 }}=\mathrm{AGND}=$ $1.23 \mathrm{~V} . \mathrm{V}_{\text {REF }}=1 \mathrm{kHz}, 2.45 \mathrm{Vp}-\mathrm{p}$, sine wave biased at 1.23 V ; DAC output op amp is AD82O; $\mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX; }}$ unless otherwise noted.) These characteristics are included for Design Guidance and are not subject to test.

Parameter	A Grades	Units	Test Conditions/Comments
DYNAM IC PERFORM ANCE			
Output Voltage Settling T ime	5	$\mu \mathrm{s}$ typ	To $0.01 \%$ of Full-Scale Range. $\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$ D AC Latch Alternately L oaded with All 0 s and All 1s
Digital to Analog G litch Impulse	60	nV-s typ	$\mathrm{V}_{\text {REF }}=1.23 \mathrm{~V}$. DAC Register Alternately L oaded with All Os and All 1s
M ultiplying Feedthrough Error	-75	dB max	DAC L atch Loaded with All Os
Output C apacitance	60	pF max	All 1s Loaded to DAC
	30	pF max	All Os L oaded to DAC
Digital F eedthrough	5	nV-s typ	F eedthrough to the DAC Output with $\overline{\mathrm{LD} 1}, \overline{\mathrm{LD} 2}$ High and Alternate L oading of All Os and All 1s into the Input Shift Register
Digital F eedthrough (AD 7945, AD 7948)	5	nV-s typ	F eedthrough to the DAC Output with $\overline{\mathrm{CS}} \mathrm{H}$ igh and Alternate L oading of All Os and All 1s to the DAC Bus
T otal H armonic D istortion	-83	dB typ	
Output Noise Spectral Density   @ 1 kH z	25	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ typ	All 1s L oaded to DAC. $\mathrm{V}_{\text {REF }}=1.23 \mathrm{~V}$

## AD7943 TIMING SPECIFICATIONS ${ }^{1}{ }_{\left(T_{A}=\right.} T_{\text {mun }}$ to $T_{\text {max }}$ unless othervise noted $)$

Parameter	Limit @ $V_{D D}=+3 V \text { to }+3.6 \mathrm{~V}$	Limit @ $V_{D D}=+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}$	Units	Description
$\mathrm{t}_{\text {st }{ }^{2}}{ }^{\text {a }}$	60	40	ns min	ST B Pulse Width
$\mathrm{t}_{\mathrm{DS}}$	15	10	ns min	D ata Setup T ime
$t_{\text {DH }}$	35	25	$n s$ min	D ata Hold T ime
$\mathrm{t}_{\text {SRI }}$	55	35	ns min	SRI D ata Pulse W idth
$\mathrm{t}_{\text {LD }}$	55	35	ns min	L oad Pulse W idth
$\mathrm{t}_{\text {CLR }}$	55	35	$n s$ min	CLR Pulse Width
$\mathrm{t}_{\text {ASB }}$	0	0	$n \mathrm{nmin}$	M in Time Between Strobing Input Shift Register and Loading DAC R egister
$\mathrm{t}_{\text {sv }}{ }^{3}$	60	35	ns max	ST B Clocking Edge to SRO D ata Valid Delay

NOTES
${ }^{1}$ All input signals are specified with $\operatorname{tr}=\mathrm{tf}=5 \mathrm{~ns}(10 \%$ to $90 \%$ of 5 V$)$ and timed from a voltage level of 1.6 V . tr and tf should not exceed $1 \mu \mathrm{~s}$ on any digital input. ${ }^{2}$ ST B mark/space ratio range is 60/40 to 40/60.
${ }^{3} \mathrm{t}_{\mathrm{sv}}$ is measured with the load circuit of Figure 2 and defined as the time required for the output to cross 0.8 V or 2.4 V .


Figure 1. AD7943 Timing Diagram


Figure 2. Load Circuit for Digital Output Timing Specifications

AD7945 TIMING SPECIFICATIONS ${ }^{1}{ }_{\left(T_{A}=\right.} T_{\text {munto }} T_{\text {Twx }}$ unless otherwise noted $)$

Parameter	Limit @   $\mathbf{V}_{\mathbf{D D}}=\mathbf{+ 3} \mathbf{V}$ to +3.6V	Limit $@$   $\mathbf{V}_{\mathbf{D D}}=+\mathbf{4 . 5} \mathbf{V}$ to +5.5 $\mathbf{V}$	Units	Description
$\mathrm{t}_{\mathrm{DS}}$	35	20	ns min	D ata Setup Time
$\mathrm{t}_{\mathrm{DH}}$	10	10	ns min	D ata H old Time
$\mathrm{t}_{\mathrm{CS}}$	60	40	ns min	Chip Select Setup T ime
$\mathrm{t}_{C H}$	0	0	ns min	Chip Select H old Time
$\mathrm{t}_{W R}$	60	40	ns min	Write Pulse Width

NOTE
${ }^{1}$ All input signals are specified with $\operatorname{tr}=\mathrm{tf}=5 \mathrm{~ns}(10 \%$ to $90 \%$ of 5 V$)$ and timed from a voltage level of 1.6 V .


Figure 3. AD7945 Timing Diagram

## 

Parameter	Limit @ $V_{D D}=+3 \mathrm{~V} \text { to }+3.6 \mathrm{~V}$	Limit @ $V_{D D}=+4.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V}$	Units	Description
$t_{\text {D }}$	45	30	$n s$ min	D ata Setup T ime
$\mathrm{t}_{\mathrm{DH}}$	10	10	ns min	D ata H old Time
$\mathrm{t}_{\text {cws }}$	0	0	ns min	$\overline{\text { CSMSB }}$ or $\overline{\text { CSLSB }}$ to $\overline{\mathrm{WR}}$ Setup T ime
$\mathrm{t}_{\text {cwh }}$	0	0	$n s$ min	$\overline{\text { CSMSB }}$ or $\overline{\text { CSLSB }}$ to $\overline{\mathrm{WR}} \mathrm{H}$ old T ime
$\mathrm{t}_{\text {LWS }}$	0	0	$n s$ min	$\overline{\text { LDAC }}$ to $\overline{\mathrm{WR}}$ Setup T ime
$\mathrm{t}_{\text {LWH }}$	0	0	ns min	$\overline{\text { LDAC }}$ to $\overline{\text { WR }}$ H old Time
$\mathrm{t}_{\mathrm{WR}}$	60	40	ns min	Write Pulse Width

NOTE
${ }^{1} \mathrm{All}$ input signals are specified with $\mathrm{tr}=\mathrm{tf}=5 \mathrm{~ns}(10 \%$ to $90 \%$ of 5 V$)$ and timed from a voltage level of 1.6 V .


Figure 4. AD7948 Timing Diagram

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$	
$\mathrm{V}_{\text {DD }}$ to DGND . . . . . . . . . . . . . . . . . . . . . -0.3 V to to +6 V	
Iouti to DGND	-0.3V to V DD +0.3 V
Ioutz to DGND ................... -0.3 V to $\mathrm{V}_{\text {DD }}+0.3 \mathrm{~V}$	
AGND to DGND ................. 0.3 V to $\mathrm{V}_{\text {DD }}+0.3 \mathrm{~V}$	
D igital Input Voltage to DGND $\ldots . . .-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$	
Input Current to Any Pin Except Supplies ${ }^{2}$	
O perating T emperature Range	
Industrial (A, B Versions)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (T Version)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage T emperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction T emperature	$+150^{\circ} \mathrm{C}$
DIP Package, Power Dissipation	670 mW
$\theta_{\mathrm{JA}}$ T hermal Impedance	$116^{\circ} \mathrm{C} / \mathrm{W}$
Lead T emperature, Soldering, (10 sec)	$+260^{\circ} \mathrm{C}$

SOP Package, Power Dissipation ..... 450 mW
$\theta_{\mid A}$ Thermal Impedance ..... $75^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, SolderingVapor Phase ( 60 sec ) . . . . . . . . . . . . . . . . . . . . . . . $+215^{\circ} \mathrm{C}$
Infrared ( 15 sec ) ..... $+220^{\circ} \mathrm{C}$
SSOP Package, Power Dissipation ..... 875 mW
$\theta_{\mid A}$ Thermal Impedance ..... $132^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, SolderingVapor Phase ( 60 sec ) ............................ $+215^{\circ} \mathrm{C}$Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . $+220^{\circ} \mathrm{C}$

## NOTES

${ }^{1}$ Stresses above those listed under "Absolute $M$ aximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2} \mathrm{~T}$ ransient currents of up to 100 mA will not cause SCR latch-up.

## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the devices feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

Model	Temperature   Range	Linearity   Error (LSBs)	Nominal   Supply Voltage	Package   Option
AD 7943BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 0.5$	+5 V	$\mathrm{~N}-16$
AD 7943BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 0.5$	+5 V	$\mathrm{R}-16$
AD 7943BRS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 0.5$	+5 V	$\mathrm{RS}-20$
AD 7943AN -B	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$	+3.3 V to +5 V	$\mathrm{~N}-16$
AD 7943ARSS-B	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$	+3.3 V to +5 V	$\mathrm{RS}-20$
AD 7945BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 0.5$	+5 V	$\mathrm{~N}-20$
AD 7945BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 0.5$	+5 V	$\mathrm{R}-20$
AD 7945BRS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 0.5$	+5 V	$\mathrm{RS}-20$
AD 7945AN $-B$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$	+3.3 V to +5 V	$\mathrm{~N}-20$
AD 7945ARS-B	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$	+3.3 V to +5 V	$\mathrm{RS}-20$
AD 7945T Q	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\pm 1$	+5 V	$\mathrm{Q}-20$
AD 7948BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 0.5$	+5 V	$\mathrm{~N}-20$
AD 7948BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 0.5$	+5 V	$\mathrm{R}-20$
AD 7948BRS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 0.5$	+5 V	$\mathrm{RS}-20$
AD 7948AN $-B$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$	+3.3 V to +5 V	$\mathrm{~N}-20$
AD 7948ARSS-B	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\pm 1$	+3.3 V to +5 V	$\mathrm{RS}-20$

[^1]
## AD7943/AD7945/AD7948

## TERMINOLOGY

## Relative Accuracy

Relative Accuracy or endpoint linearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero error and full-scale error and is normally expressed in Least Significant Bits or as a percentage of fullscale reading.

## Differential Nonlinearity

Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of 1 LSB maximum ensures monotonicity.

## Gain Error

Gain Error is a measure of the output error between an ideal DAC and the actual device output. It is measured with all 1 s in the DAC after offset error has been adjusted out and is expressed in Least Significant Bits. Gain error is adjustable to zero with an external potentiometer.

## Output Leakage C urrent

O utput leakage current is current which flows in the DAC Iadder switches when these are turned off. F or the I I OUT 1 terminal, it can be measured by loading all 0 s to the DAC and measuring the lout 1 current. M inimum current will flow in the lout2 line when the DAC is loaded with all 1 s .

## Output Capacitance

This is the capacitance from the $\mathrm{I}_{\text {OUT } 1}$ pin to AGND.
Output Voltage Settling Time
This is the amount of time it takes for the output to settle to a specified level for a full-scale input change. For these devices, it is specified both with the AD 843 as the output op amp in the normal current mode and with the AD 820 in the biased current mode.

## Digital to Analog Glitch Impulse

This is the amount of charge injected into the analog output when the inputs change state. It is specified as the area of the glitch in nV-s. It is measured with the reference input connected to AGND and the digital inputs toggled between all $1 s$ and all Os. As with Settling Time, it is specified with both the AD 817 and the AD 820.

## AC Feedthrough Error

This is the error due to capacitive feedthrough from the D AC reference input to the DAC I Iouti terminal, when all 0 s are loaded in the DAC.

## Digital Feedthrough

When the device is not selected, high frequency logic activity on the device digital inputs is capacitively coupled through the device to show up as noise on the $\mathrm{I}_{\text {OUT } 1}$ pin and subsequently on the op amp output. This noise is digital feedthrough.


## AD 7943 PIN DESCRIPTION

Pin Mnemonic	Description
Iouti	D AC current output terminal 1.
Iout2	D AC current output terminal 2. T his should be connected to the AGND pin.
AGND	This pin connects to the back gates of the current steering switches. In normal operation, it should be connected to the signal ground of the system. In biased single-supply operation it may be biased to some voltage between 0 V and the 1.23 V . See Figure 11 for more details.
ST B 1	This is the Strobe 1 input. D ata is clocked into the input shift register on the rising edge of this signal. $\overline{\text { STB } 3}$ must be high. ST B 2, ST B 4 must be low.
$\overline{\mathrm{LD} 1}, \overline{\mathrm{LD} 2}$	Active low inputs. When both of these are low, the DAC register is updated and the output will change to reflect this.
SRI	Serial D ata Input. D ata on this line will be clocked into the input shift register on one of the Strobe inputs, when they are enabled.
ST B 2	This is the Strobe 2 input. D ata is clocked into the input shift register on the rising edge of this signal. $\overline{\text { STB } 3}$ must be high. ST B 1, ST B 4 must be low.
$\overline{\text { STB } 3}$	This is the Strobe 3 input. D ata is clocked into the input shift register on the falling edge of this signal. STB 1, ST B 2, ST B 4, must be low.
ST B 4	This is the Strobe 4 input. D ata is clocked into the input shift register on the rising edge of this signal. $\overline{\text { STB } 3}$ must be high. ST B 1, ST B 2 must be low.
DGND	Digital Ground.
$\overline{\text { CLR }}$	A synchronous CLR input. When this input is taken low, all 0 s are loaded to the DAC latch.
$V_{\text {D }}$	Power supply input. This is nominally +5 V for N ormal M ode O peration and +3.3 V to +5 V for Biased M ode O peration.
$V_{\text {ReF }}$	DAC reference input.
$\underline{\mathrm{R}_{\text {FB }}}$	DAC feedback resistor pin.

AD 7945 PIN DESCRIPTION

Pin Mnemonic	Description
Iouti	D AC current output terminal 1.
AGND	This pin connects to the back gates of the current steering switches. The DAC $\mathrm{I}_{\text {OUT2 } 2}$ terminal is also connected internally to this point.
DGND	Digital Ground.
DB11-D B0	D igital D ata Inputs.
$\overline{\mathrm{CS}}$	Active L ow, Chip Select Input.
$\overline{\mathrm{WR}}$	Active Low, W rite Input.
$V_{\text {D }}$	Power supply input. This is nominally +5 V for N ormal M ode O peration and +3.3 V to +5 V for Biased M ode O peration.
$\mathrm{V}_{\text {REF }}$	D AC reference input.
$\mathrm{R}_{\text {FB }}$	D AC feedback resistor pin.

## AD 7948 PIN DESCRIPTION



## Typical Performance Curves



Figure 5. Differential Nonlinearity Error vs. $V_{\text {REF }}$ (Normal Mode)


Figure 6. Integral Nonlinearity Error vs. $V_{\text {REF }}$ (Normal Mode)


Figure 7. All Codes Linearity In Normal Mode ( $V_{D D}=+5 \mathrm{~V}$ )


Figure 8. Linearity Error vs. $V_{\text {REF }}$ (Biased Mode)


Figure 9. All Codes Linearity in Biased Mode ( $V_{D D}=+3.3 \mathrm{~V}$ )


Figure 10. Total Harmonic Distortion vs. Frequency


Figure 11. Digital-to-Analog Glitch Impulse


Figure 12. Multiplying Frequency Response vs. Digital Code

## GENERAL DESCRIPTION

## D/A Section

The AD 7943, AD 7945 and AD 7948 are 12-bit current-output D/A converters. A simplified circuit diagram is shown in Figure 13. The DAC architecture is segmented. This means that the 2 M SBs of the 12-bit data word are decoded to drive the three switches A, B and C. The remaining 10 bits of the data word drive the switches S0 to S9 in a standard inverting R-2R ladder configuration.
E ach of the switches A to C steers $1 / 4$ of the total reference current into either $\mathrm{I}_{\text {OUT } 1}$ or $\mathrm{I}_{\text {OUT } 2}$ with the remaining $1 / 4$ of the total current passing through the R-2R section. Switches S9 to S0 steer binarily weighted currents into either $\mathrm{I}_{\text {OUT } 1}$ or $\mathrm{I}_{\text {OUT } 2}$. If $I_{\text {OUT } 1}$ and $I_{\text {OUt } 2}$ are kept at the same potential, a constant current flows in each ladder leg, regardless of digital input code. Thus, the input resistance seen at $\mathrm{V}_{\text {REF }}$ is always constant. It is equal to $R / 2$. The $V_{\text {REF }}$ input may be driven by any reference voltage or current, ac or dc that is within the Absolute M aximum Ratings.
The device provides access to the $V_{\text {REF }}, R_{F B}$, and $I_{\text {OUT1 }}$ terminals of the DAC. This makes the device extremely versatile and allows it to be configured in several different operating modes. Examples of these are shown in the following sections. The AD 7943 also has a separate Iout 2 pin. In the AD 7945 and AD 7948 this is internally tied to AGND.
When an output amplifier is connected in the standard configuration of Figure 14, the output voltage is given by:

$$
V_{\text {OUT }}=-D \times V_{\text {REF }}
$$

where $D$ is the fractional representation of the digital word loaded to the DAC. D can be set from 0 to 4095/4096, since it has 12-bit resolution.


Figure 13. Simplified D/A Circuit Diagram

## UNIPOLAR BINARY OPERATION <br> (Two-Quadrant Multiplication)

Figure 14 shows the standard unipolar binary connection diagram for the AD 7943, AD 7945 and AD 7948. When $\mathrm{V}_{\mathrm{IN}}$ is an ac signal, the circuit performs two-quadrant multiplication. Resistors R 1 and R2 allow the user to adjust the D AC gain error. With a specified gain error of 2 LSBs over temperature, these are not necessary in many applications. Circuit offset is due completely to the output amplifier offset. It can be removed by adjusting the amplifier offset voltage. Alternatively, choosing a low offset amplifier makes this unnecessary.
A1 should be chosen to suit the application. For example, the OP07 is ideal for very low bandwidth applications ( 10 kHz or


NOTES

1. ONLY ONE DAC IS SHOWN FOR CLARITY.
2. DIGITAL INPUT CONNECTIONS ARE OMITTED.
3. C1 PHASE COMPENSATION (5-15pF) MAY BE REQUIRED WHEN USING HIGH SPEED AMPLIFIER.

Figure 14. Unipolar Binary Operation
lower) while the AD 711 is suitable for medium bandwidth applications ( 200 kHz or lower). For high bandwidth applications of greater than 200 kHz , the AD 843 and AD 847 offer very fast settling times.
The code table for Figure 14 is shown in T able III.
Table III. Unipolar Binary C ode

Digital Input   MSB $\quad$ LSB	Analog Output   (V ${ }_{\text {OUT }}$ as Shown in Figure 15)
111111111111	$-V_{\text {REF }}(4095 / 4096)$
100000000001	$-V_{\text {REF }}(2049 / 4096)$
100000000000	$-V_{\text {REF }}(2048 / 4096)$
011111111111	$-V_{\text {REF }}(2047 / 4096)$
000000000001	$-V_{\text {REF }}(1 / 4096)$
000000000000	$-V_{\text {REF }}(0 / 4096)=0$

NOTE
N ominal LSB size for the circuit of Figure 14 is given by: $\mathrm{V}_{\mathrm{REF}}(1 / 4096)$.

## AD7943/AD7945/AD7948

## BIPOLAR OPERATION

## (Four-Quadrant Multiplication)

Figure 15 shows the standard connection diagram for bipolar operation of the AD 7943, AD 7945 and AD 7948. The coding is offset binary as shown in T able IV. When $\mathrm{V}_{\mathrm{IN}}$ is an ac signal, the circuit performs four-quadrant multiplication. Resistors R 1 and R2 are for gain error adjustment and are not needed in many applications where the device gain error specifications are adequate. To maintain the gain error specifications, resistors R3, R4 and R5 should be ratio matched to $0.01 \%$.


NOTES

1. ONLY ONE DAC IS SHOWN FOR CLARITY.
2. DIGITAL INPUT CONNECTIONS ARE OMITTED.
3. C1 PHASE COMPENSATION $(5-15 \mathrm{pF})$ MAY BE REQUIRED WHEN USING HIGH SPEED AMPLIFIER, A1.

Figure 15. Bipolar Operation (Four-Quadrant Multiplication)
Suitable dual amplifiers for use with Figure 15 are the OP270 (low noise, low bandwidth, 15 kHz ), the AD 712 (medium bandwidth, 200 kHz ) or the AD 827 (wide bandwidth, 1 M Hz ).

Table IV. Bipolar (Offset Binary) Code

Table Digital Input   MSB $\quad$ LSB	Analog Output   (V ${ }_{\text {OUT }}$ as Shown in Figure 16)
111111111111	$+V_{\text {REF }}(2047 / 2048)$
100000000001	$+V_{\text {REF }}(1 / 2048)$
100000000000	$+V_{\text {REF }}(0 / 2048)=0$
011111111111	$-V_{\text {REF }}(1 / 2048)$
000000000001	$-V_{\text {REF }}(2047 / 2048)$
000000000000	$-V_{\text {REF }}(2048 / 2048)=-V_{\text {REF }}$

## NOTE

Nominal LSB size for the circuit of Figure 15 is given by: $V_{\text {REF }}(1 / 2048)$.

## SINGLE SUPPLY APPLICATIONS

The "-B" versions of the devices are specified and tested for single supply applications. Figure 16 shows the recommended circuit for operation with a single +5 V to +3.3 V supply. The $\mathrm{I}_{\text {OUT2 }}$ and AGND terminals are biased to 1.23 V . Thus, with 0 V applied to the $\mathrm{V}_{\text {REF }}$ terminal, the output will go from 1.23 V (all 0s loaded to the DAC) to 2.46 V (all 1 s loaded). With 2.45 V applied to the $\mathrm{V}_{\text {REF }}$ terminal, the output will go from 1.23 V (all Os loaded) to 0.01 V (all 1s loaded). It is important when considering INL in a single-supply system to realize that most single-supply amplifiers cannot sink current and maintain zero volts at the output. In Figure 16, with $\mathrm{V}_{\text {ref }}=2.45 \mathrm{~V}$ the required sink current is $200 \mu \mathrm{~A}$. The minimum output voltage level is 10 mV . Op amps like the OP295 are capable of maintaining this level while sinking $200 \mu \mathrm{~A}$.
Figure 16 shows the I IOUT2 and AGND terminals being driven by an amplifier. This is to maintain the bias voltage at 1.23 V as the impedance seen looking into the $\mathrm{I}_{\text {оUT } 2}$ terminal changes. This impedance is code dependent and varies from infinity (all Os loaded in the DAC) to about $6 \mathrm{k} \Omega$ minimum. The AD 589 has a typical output resistance of $0.6 \Omega$ and it can be used to drive the terminals directly. However, this will cause a typical linearity degradation of 0.2 LSBs. If this is unacceptable then the buffer amplifier is necessary. Figure 9 shows the typical linearity performance of the AD 7943/AD 7945/AD 7948 when used as in Figure 16 with $\mathrm{V}_{\mathrm{DD}}$ set at +3.3 V and $\mathrm{V}_{\mathrm{REF}}=0 \mathrm{~V}$.


Figure 16. Single Supply System

## MICROPROCESSOR INTERFACING

## AD7943 to ADSP-2101 Interface

Figure 17 shows the AD 7943 to AD SP-2101 interface diagram. The DSP is set up for alternate inverted framing with an internally generated SCLK. TFS from the ADSP-2101 drives the ST B1 input on the AD 7943. The serial word length should be set at 12 . T his is done by making SLEN $=11$ (1011 binary). The SLEN field is Bits 3-0 in the SPORT control register ( $0 \times 3$ FF 6 for SPORT 0 and 0x3FF 2 for SPORT 1).

With the 16 M Hz version of the AD SP-2101, the maximum output SCLK is 8 M Hz . The AD 7943 setup and hold time of 10 ns and 25 ns mean that it is compatible with the DSP when running at this speed.
The OUTPUT FLAG drives both $\overline{\mathrm{LD} 1}$ and $\overline{\mathrm{LD} 2}$ and is brought low to update the DAC register and change the analog output.


Figure 17. AD7943 to ADSO-2101 Interface

## AD7943 to DSP56001 Interface

Figure 18 shows the interface diagram for the AD 7943 to the DSP56001. The DSP56001 is configured for normal mode synchronous operation with gated clock. The serial clock, SCK, is set up as an output from the DSP and the serial word length is set for 12 bits (WL $0=1, W L 1=0$, in C ontrol Register A). SCK from the DSP56001 is applied to the AD 7943 STB3 input. D ata from the DSP56000 is valid on the falling edge of SCK and this is the edge which clocks the data into the AD 7943 shift register. ST B1, ST B2 and ST B4 are tied low on the AD 7943 to permanently enable the $\overline{\text { STB3 }}$ input.
When the 12-bit serial word has been written to the AD 7943, the $\overline{\mathrm{LD} 1}, \overline{\mathrm{LD} 2}$ inputs are brought low to update the DAC register.


Figure 18. AD7943 to DSP56001 Interface

## AD7945 to MC68000 Interface

Figure 19 shows the M C 68000 interface to the AD 7945. The appropriate data is written into the DAC in one M OVE instruction to the appropriate memory location.


Figure 19. AD7945 to MC68000 Interface

## AD7948 to Z80 Interface

Figure 20 is the interface between the AD 7948 and the 8-bit bus of the Z 80 processor. Three write operations are needed to load the DAC. The first two load the M S byte and the LS byte and the third brings the $\overline{\mathrm{LDAC}}$ low to update the output.


Figure 20. AD7948 to Z80 Interface

## OUTLINE DIMENSIONS

Dimensions shown in inches and（mm）．


20－Pin Plastic DIP（N－20）


20－Pin SOP（R－20）



20－Pin Cerdip（Q－20）



20－Pin SSOP（RS－20）



[^0]:    Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]:    NOTE
    ${ }^{1} \mathrm{~N}=$ Plastic DIP; R = SOP (Small Outline Package); RS = SSOP (Shrink Small Outline Package); Q = Cerdip.

