0.1 GHz-2.5 GHz, 70 dB Logarithmic Detector/Controller

FEATURES
Wide Bandwidth: 0.1 GHz to 2.5 GHz Min
High Dynamic Range: 70 dB to 63.0 dB
High Accuracy: 61.0 dB over 65 dB Range (@ 1.9 GHz)
Fast Response: 40 ns Full-Scale Typical
Controller Mode with Error Output
Scaling Stable Over Supply and Temperature
Wide Supply Range: 2.7 V to 5.5 V
Low Power: 40 mW at 3 V
Power-Down Feature: 60 mW at 3 V
Complete and Easy to Use

APPLICATIONS

RF Transmitter Power Amplifier Setpoint Control and Level Monitoring
Logarithmic Amplifier for RSSI Measurement Cellular Base Stations, Radio Link, Radar

GENERAL DESCRIPTION

The AD8313 is a complete multistage demodulating logarithmic amplifier, capable of accurately converting an RF signal at its differential input to an equivalent decibel-scaled value at its dc output. The AD8313 maintains a high degree of log conformance for signal frequencies from 0.1 GHz to 2.5 GHz and is useful over the range of 10 MHz to 3.5 GHz . The nominal input dynamic range is -65 dBm to 0 dBm (re: 50Ω), and the sensitivity can be increased by 6 dB or more with a narrow-band input impedance matching network or balun. Application is straightforward, requiring only a single supply of 2.7 V to 5.5 V and the addition of a suitable input and supply decoupling. Operating on a 3 V supply, its 13.7 mA consumption (for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) amounts to only 41 mW . A power-down feature is provided; the input is taken high to initiate a low current $(20 \mu \mathrm{~A})$ sleep mode, with a threshold at half the supply voltage.
The AD8313 uses a cascade of eight amplifier/limiter cells, each having a nominal gain of 8 dB and a -3 dB bandwidth of 3.5 GHz , for a total midband gain of 64 dB . At each amplifier output, a detector (rectifier) cell is used to convert the RF signal to baseband form; a ninth detector cell is placed directly at the input of the AD8313. The current-mode outputs of these cells are summed to generate a piecewise linear approximation to the logarithmic function, and converted to a low impedance voltage-mode output by a transresistance stage, which also acts as a low-pass filter.
When used as a log amp, the scaling is determined by a separate feedback interface (a transconductance stage) that sets the slope

FUNCTIONAL BLOCK DIAGRAM

to approximately $18 \mathrm{mV} / \mathrm{dB}$; used as a controller, this stage accepts the setpoint input. The logarithmic intercept is positioned to nearly -100 dBm , and the output runs from about 0.45 V dc at -73 dBm input to 1.75 V dc at 0 dBm input. The scale and intercept are supply and temperature stable.
The AD8313 is fabricated on Analog Devices' advanced 25 GHz silicon bipolar IC process and is available in an 8 -lead MSOP package. The operating temperature range is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. An evaluation board is available.

Figure 1. Typical Logarithmic Response and Error vs. Input Amplitude

[^0]AD8313-SDFG/FIGATANS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}=5 \mathrm{~V}^{1}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega\right.$, unless otherwise noted.)

Parameter	Conditions	Min ${ }^{2}$	Typ	Max ${ }^{2}$	Unit		
SIGNAL INPUT INTERFACE Specified Frequency Range DC Common-Mode Voltage Input Bias Currents Input Impedance	$\mathrm{f}_{\mathrm{RF}}<100 \mathrm{MHz}^{3}$	0.1	$\begin{aligned} & V_{\text {POS }}-0.75 \\ & 10 \\ & 900 \\| 1.1 \\ & \hline \end{aligned}$	2.5	GHz V $\mu \mathrm{A}$ $\Omega \\| \mathrm{pF}^{4}$		
$\begin{aligned} & \text { LOG (RSSI) MODE } \\ & 100 \mathrm{MHz}^{5} \\ & \pm 3 \mathrm{~dB} \text { Dynamic Range }{ }^{6} \\ & \text { Range Center } \\ & \pm 1 \mathrm{~dB} \text { Dynamic Range } \\ & \text { Slope } \\ & \text { Intercept } \\ & \\ & \pm 3 \mathrm{~dB} \text { Dynamic Range } \\ & \text { Range Center } \\ & \pm 1 \mathrm{~dB} \text { Dynamic Range } \\ & \text { Slope } \\ & \text { Intercept } \\ & \text { Temperature Sensitivity } \end{aligned}$	Sinusoidal, input termination configuration Nominal Conditions $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 5.5 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T} \leq+85^{\circ} \mathrm{C}$ $\mathrm{P}_{\mathrm{IN}}=-10 \mathrm{dBm}$	own in 53.5 17 -96 51 16 -99	ure 11. 65 -31.5 56 19 -88 64 -31 55 19 -89 -0.022	$\begin{aligned} & 21 \\ & -80 \end{aligned}$ $\begin{aligned} & 22 \\ & -75 \end{aligned}$	dB dBm dB $\mathrm{mV} / \mathrm{dB}$ dBm dB dBm dB $\mathrm{mV} / \mathrm{dB}$ dBm $\mathrm{dB} /{ }^{\circ} \mathrm{C}$		
$\begin{aligned} & 900 \mathrm{MHz}^{5} \\ & \pm 3 \mathrm{~dB} \text { Dynamic Range } \\ & \quad \text { Range Center } \\ & \pm 1 \mathrm{~dB} \text { Dynamic Range } \\ & \text { Slope } \\ & \text { Intercept } \\ & \pm 3 \mathrm{~dB} \text { Dynamic Range } \\ & \text { Range Center } \\ & \pm 1 \mathrm{~dB} \text { Dynamic Range } \\ & \text { Slope } \\ & \text { Intercept } \\ & \text { Temperature Sensitivity } \end{aligned}$	Nominal Conditions $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 5.5 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T} \leq+85^{\circ} \mathrm{C}$ $P_{\mathrm{IN}}=-10 \mathrm{dBm}$	60 15.5 -105 55.5 15 -110	$\begin{aligned} & 69 \\ & -32.5 \\ & 62 \\ & 18 \\ & -93 \\ & \\ & 68.5 \\ & -32.75 \\ & 61 \\ & 18 \\ & -95 \\ & -0.019 \end{aligned}$	$\begin{gathered} 20.5 \\ -81 \end{gathered}$ $\begin{aligned} & 21 \\ & -80 \end{aligned}$	dB dBm dB $\mathrm{mV} / \mathrm{dB}$ dBm dB dBm dB $\mathrm{mV} / \mathrm{dB}$ dBm $\mathrm{dB} /{ }^{\circ} \mathrm{C}$		
$1.9 \mathrm{GHz}^{7}$ $\pm 3 \mathrm{~dB}$ Dynamic Range Range Center $\pm 1 \mathrm{~dB}$ Dynamic Range Slope Intercept $\pm 3 \mathrm{~dB}$ Dynamic Range Range Center $\pm 1 \mathrm{~dB}$ Dynamic Range Slope Intercept Temperature Sensitivity	Nominal Conditions $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 5.5 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T} \leq+85^{\circ} \mathrm{C}$ $\mathrm{P}_{\mathrm{IN}}=-10 \mathrm{dBm}$	52 15 -115 50 14 -125	$\begin{aligned} & 73 \\ & -36.5 \\ & 62 \\ & 17.5 \\ & -100 \\ & \\ & 73 \\ & -36.5 \\ & 60 \\ & 17.5 \\ & -101 \\ & -0.019 \end{aligned}$	$\begin{aligned} & 20.5 \\ & -85 \\ & \\ & 21.5 \\ & -78 \end{aligned}$	dB dBm dB $\mathrm{mV} / \mathrm{dB}$ dBm dB dBm dB $\mathrm{mV} / \mathrm{dB}$ dBm $\mathrm{dB} /{ }^{\circ} \mathrm{C}$		
$2.5 \mathrm{GHz}^{7}$ $\pm 3 \mathrm{~dB}$ Dynamic Range Range Center $\pm 1 \mathrm{~dB}$ Dynamic Range Slope Intercept $\pm 3 \mathrm{~dB}$ Dynamic Range Range Center $\pm 1 \mathrm{~dB}$ Dynamic Range Slope Intercept Temperature Sensitivity	Nominal Conditions $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq+5.5 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T} \leq 85^{\circ} \mathrm{C}$ $\mathrm{P}_{\mathrm{IN}}=-10 \mathrm{dBm}$	48 16 -111 47 14.5 -128	$\begin{aligned} & 66 \\ & -34 \\ & 46 \\ & 20 \\ & -92 \\ & \\ & 68 \\ & -34.5 \\ & 46 \\ & 20 \\ & -92 \\ & -0.040 \end{aligned}$	$\begin{aligned} & 25 \\ & -72 \end{aligned}$ $\begin{aligned} & 25 \\ & -56 \end{aligned}$	dB dBm dB $\mathrm{mV} / \mathrm{dB}$ dBm dB dBm dB $\mathrm{mV} / \mathrm{dB}$ dBm $\mathrm{dB} /{ }^{\circ} \mathrm{C}$		

Parameter	Conditions	Min ${ }^{2}$	Typ	Max ${ }^{2}$	Unit	
$3.5 \mathrm{GHz}^{5}$ $\pm 3 \mathrm{~dB}$ Dynamic Range $\pm 1 \mathrm{~dB}$ Dynamic Range Slope Intercept	Nominal Conditions		$\begin{aligned} & 43 \\ & 35 \\ & 24 \\ & -65 \end{aligned}$		dB dB $\mathrm{mV} / \mathrm{dB}$ dBm	
CONTROL MODE Controller Sensitivity Low Frequency Gain Open-Loop Corner Frequency Open-Loop Slew Rate VSET Delay Time	$\mathrm{f}=900 \mathrm{MHz}$ VSET to VOUT ${ }^{8}$ VSET to VOUT ${ }^{8}$ $\mathrm{f}=900 \mathrm{MHz}$		$\begin{aligned} & 23 \\ & 84 \\ & 700 \\ & 2.5 \\ & 150 \end{aligned}$		V/dB dB Hz V/ $\mu \mathrm{s}$ ns	
VOUT INTERFACE Current Drive Capability Source Current Sink Current Minimum Output Voltage Maximum Output Voltage Output Noise Spectral Density Small Signal Response Time Large Signal Response Time	Open-Loop Open-Loop $\begin{aligned} & \mathrm{P}_{\mathrm{IN}}=-60 \mathrm{dBm}, \mathrm{f}_{\mathrm{SPOT}}=100 \mathrm{~Hz} \\ & \mathrm{P}_{\mathrm{IN}}=-60 \mathrm{dBm}, \mathrm{f}_{\text {SPOT }}=10 \mathrm{MHz} \\ & \mathrm{P}_{\mathrm{IN}}=-60 \mathrm{dBm} \text { to }-57 \mathrm{dBm}, 10 \% \text { to } 90 \% \\ & \mathrm{P}_{\mathrm{IN}}=\text { No Signal to } 0 \mathrm{dBm}, \text { Settled to } 0.5 \mathrm{~dB} \end{aligned}$		$\begin{aligned} & 400 \\ & 10 \\ & 50 \\ & \mathrm{~V}_{\text {POS }}-0.1 \\ & 2.0 \\ & 1.3 \\ & 40 \\ & 110 \end{aligned}$	$\begin{aligned} & 60 \\ & 160 \end{aligned}$	$\mu \mathrm{A}$ mA mV V $\mu \mathrm{V} / \sqrt{\mathrm{Hz}}$ $\mu \mathrm{V} / \sqrt{\mathrm{Hz}}$ ns ns	
VSET INTERFACE Input Voltage Range Input Impedance		0	$18\|\mid 1$	$\mathrm{V}_{\text {POS }}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{k} \Omega \\| \mathrm{pF}^{4} \end{aligned}$	
POWER-DOWN INTERFACE PWDN Threshold Power-Up Response Time PWDN Input Bias Current	Time delay following high to low transition until device meets full specifications. $\begin{aligned} & \text { PWDN }=0 \mathrm{~V} \\ & \text { PWDN }=\mathrm{V}_{\mathrm{S}} \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{POS}} / 2 \\ & 1.8 \\ & 5 \\ & <1 \end{aligned}$		V $\mu \mathrm{s}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$	
POWER SUPPLY Operating Range Powered-Up Current Powered-Down Current	$\begin{aligned} & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 5.5 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T} \leq+85^{\circ} \mathrm{C} \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 3.3 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T} \leq+85^{\circ} \mathrm{C} \\ & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 5.5 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T} \leq+85^{\circ} \mathrm{C} \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq 3.3 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T} \leq+85^{\circ} \mathrm{C} \end{aligned}$	2.7	$\begin{aligned} & 13.7 \\ & 50 \\ & 20 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 15.5 \\ & 18.5 \\ & 18.5 \\ & 150 \\ & 50 \end{aligned}$	V mA mA mA $\mu \mathrm{A}$ $\mu \mathrm{A}$	

NOTES

${ }^{1}$ Except where otherwise noted, performance at $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$ is equivalent to 5 V operation.
${ }^{2}$ Minimum and maximum specified limits on parameters that are guaranteed but not tested are six sigma values.
${ }^{3}$ Input impedance shown over frequency range in Figure 8.
${ }^{4}$ Double vertical bars ($\|$) denote "in parallel with."
${ }^{5}$ Linear regression calculation for error curve taken from -40 dBm to -10 dBm for all parameters.
${ }^{6}$ Dynamic range refers to range over which the linearity error remains within the stated bound.
${ }^{7}$ Linear regression calculation for error curve taken from -60 dBm to -5 dBm for 3 dB dynamic range. All other regressions taken from -40 dBm to -10 dBm .
${ }^{8} \mathrm{AC}$ response shown in TPC 9.
Specifications subject to change without notice.

AD8313

ABSOLUTE MAXIMUM RATINGS*
Supply Voltage V_{S}. 5.5 V
VOUT, VSET, PWDN 0 V, VPOS
Input Power Differential (re: $50 \Omega, 5.5 \mathrm{~V}$) 25 dBm
Input Power Single-Ended (re: $50 \Omega, 5.5 \mathrm{~V}$) 19 dBm
Internal Power Dissipation . 200 mW
θ_{JA}. $200^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Junction Temperature $125^{\circ} \mathrm{C}$
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN FUNCTION DESCRIPTIONS

Pin	Name	Description
1,4	VPOS	Positive supply voltage (VPOS), 2.7 V to 5.5 V.
2	INHI	Noninverting Input. This input should be ac-coupled.
3	INLO	Inverting Input. This input should be ac-coupled.
5	PWDN	Connect pin to ground for normal operating mode. Connect pin to supply for power-down mode.
6	COMM	Device Common. 7
VSET	Setpoint input for operation in controller mode. To operate in RSSI mode, short VSET and VOUT.	
8	VOUT	Logarithmic/Error Output.

Description

Positive ac-coupled.

Inverting Input. This input should be ac-coupled.
Connect pin to ground for normal operating mode. Connect pin to supply for power-down mode.

Setpoint input for operation in controller mode. To Logarithmic/Error Output.

PIN CONFIGURATION

ORDERING GUIDE

Model	Temperature Range	Package Descriptions	Package Option	Brand Code
AD8313ARM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	8-Lead MSOP	RM-08	J 1 A
AD8313ARM-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	13" Tape and Reel	RM-08	J 1 A
AD8313ARM-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	7" Tape and Reel	RM-08	J 1 A
AD8313-EVAL		Evaluation Board		

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD8313 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Typical Performance Characteristics-AD8313

TPC 1. Vout vs. Input Amplitude

TPC 2. Log Conformance vs. Input Amplitude

TPC 3. Vout and Log Conformance vs. Input Amplitude at $100 \mathrm{MHz} ;-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

TPC 4. Vout and Log Conformance vs. Input Amplitude at $900 \mathrm{MHz} ;-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

TPC 5. Vout and Log Conformance vs. Input Amplitude at $1.9 \mathrm{GHz} ;-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

TPC 6. Vout and Log Conformance vs. Input Amplitude at $2.5 \mathrm{GHz} ;-40^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

AD8313

TPC 7. Vout Slope vs. Frequency; $-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

TPC 8. Vout Slope vs. Supply Voltage

TPC 9. AC Response from $V_{S E T}$ to $V_{\text {OUT }}$

TPC 10. V $V_{\text {OUT }}$ Intercept vs. Frequency; $-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$, and $+85^{\circ} \mathrm{C}$

TPC 11. Vout Intercept vs. Supply Voltage

TPC 12. Vout Noise Spectral Density
\square AD8313

TPC 13. Typical Supply Current vs. PWDN Voltage

TPC 14. PWDN Response Time

TPC 15. Response Time, No Signal to -45 dBm

TPC 16. Response Time, No Signal to 0 dBm

Figure 2. Test Setup for PWDN Response Time

Figure 3. Test Setup for RSSI Mode Pulse Response

AD8313

CIRCUIT DESCRIPTION

The AD8313 is essentially an 8 -stage logarithmic amplifier, specifically designed for use in RF measurement and power amplifier control applications at frequencies up to 2.5 GHz . A block diagram is shown in Figure 4. (For a full treatment of log amp theory and design principles, consult the AD8307 data sheet).

Figure 4. Block Diagram
A fully differential design is used, and the inputs INHI and INLO (Pins 2 and 3) are internally biased to approximately 0.75 V below the supply voltage, and present a low frequency impedance of nominally 900Ω in parallel with 1.1 pF . The noise spectral density referred to the input is $0.6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, equivalent to a voltage of $35 \mu \mathrm{~V} \mathrm{rms}$ in a 3.5 GHz bandwidth, or a noise power of 76 dBm re: 50Ω. This sets the lower limit to the dynamic range; the Applications section shows how to increase the sensitivity by the use of a matching network or input transformer. However, the low end accuracy of the AD8313 is enhanced by specially shaping the demodulation transfer characteristic to partially compensate for errors due to internal noise.

Each of the eight cascaded stages has a nominal voltage gain of 8 dB and a bandwidth of 3.5 GHz , and is supported by precision biasing cells that determine this gain and stabilize it against supply and temperature variations. Since these stages are direct-coupled and the dc gain is high, an offset compensation loop is included. The first four of these stages, and the biasing system, are powered from Pin 4, while the later stages and the output interfaces are powered from Pin 1. The biasing is controlled by a logic interface PWDN (Pin 5); this is grounded for normal operation, but may be taken high (to V_{S}) to disable the chip. The threshold is at $\mathrm{V}_{\text {POS }} / 2$ and the biasing functions are enabled and disabled within 1.8μ.

Each amplifier stage has a detector cell associated with its output. These nonlinear cells essentially perform an absolute value (fullwave rectification) function on the differential voltages along this backbone, in a transconductance fashion; their outputs are in current-mode form and are thus easily summed. A ninth detector cell is added at the input of the AD8313. Since the midrange response of each of these nine detector stages is separated by 8 dB , the overall dynamic range is about 72 dB (Figure 5). The upper end of this range is determined by the capacity of the first detector cell, and occurs at approximately 0 dBm . The practical dynamic range is over 70 dB , to the $\pm 3 \mathrm{~dB}$ error points. However, some erosion of this range will occur at temperature and frequency extremes. Useful operation to over 3 GHz is possible, and the AD8313 remains serviceable at 10 MHz (see Typical Performance Characteristics), needing only a small amount of additional ripple filtering.

Figure 5. Typical RSSI Response and Error vs. Input Power at 1.9 GHz
The fluctuating current output generated by the detector cells, with a fundamental component at twice the signal frequency, is filtered first by a low-pass section inside each cell, and then the output stage. The output stage converts these currents to a voltage, $V_{\text {OUt }}$, at pin VOUT (Pin 8), which can swing rail-to-rail. The filter exhibits a two-pole response with a corner at approximately 12 MHz and full-scale rise time (10% to 90%) of 40 ns . The residual output ripple at an input frequency of 100 MHz has an amplitude of under 1 mV . The output can drive a small resistive load; it can source currents of up to $400 \mu \mathrm{~A}$, and sink up to 10 mA . The output is stable with any capacitive load, though settling time may be impaired. The low frequency incremental output impedance is approximately 0.2Ω.
In addition to its use as an RF power measurement device (that is, as a logarithmic amplifier), the AD8313 may also be used in controller applications by breaking the feedback path from VOUT to the VSET (Pin 7), which determines the slope of the output (nominally $18 \mathrm{mV} / \mathrm{dB}$). This pin becomes the setpoint input in controller modes. In this mode, the voltage $\mathrm{V}_{\text {OUt }}$ remains close to ground (typically under 50 mV) until the decibel equivalent of the voltage $\mathrm{V}_{\text {SET }}$ is reached at the input, when $\mathrm{V}_{\text {OUT }}$ makes a rapid transition to a voltage close to $\mathrm{V}_{\text {POS }}$ (see the Operating in Controller Mode section). The logarithmic intercept is nominally positioned at -100 dBm (re: 50Ω), and this is effective in both the log amp mode and the controller mode.

Thus, with Pins 7 and 8 connected (log amp mode) we have

$$
V_{\text {OUT }}=V_{\text {SLOPE }}\left(P_{I N}+100 \mathrm{dBm}\right)
$$

where $P_{I N}$ is the input power stated in dBm when the source is directly terminated in 50Ω. However, the input impedance of the AD8313 is much higher than 50Ω, and the sensitivity of this device may be increased by about 12 dB by using some type of matching network (see below), which adds a voltage gain and lowers the intercept by the same amount. This dependence on the choice of reference impedance can be avoided by restating the expression as

$$
V_{\text {OUT }}=20 \times V_{\text {SLOPE }} \times \log \left(V_{I N} / 2.2 \mu V\right)
$$

where $V_{I N}$ is the rms value of a sinusoidal input appearing across Pins 2 and 3; here, $2.2 \mu \mathrm{~V}$ corresponds to the intercept, expressed in voltage terms. (For a more thorough treatment of the effect of signal waveform and metrics on the intercept positioning for a $\log \mathrm{amp}$, see the AD8307 data sheet).

With Pins 7 and 8 disconnected (controller mode), the output may be stated as

$$
\begin{array}{lll}
V_{\text {OUT }} v V_{S} & \text { when } & V_{S L O P E}\left(P_{I N}+100\right)>V_{S E T} \\
V_{\text {OUT }} v 0 & \text { when } & V_{S L O P E}\left(P_{I N}+100\right)<V_{S E T}
\end{array}
$$

when the input is stated in terms of the power of a sinusoidal signal across a net termination impedance of 50Ω. The transition zone between high and low states is very narrow, since the output stage behaves essentially as a fast integrator. The above equations may be restated as

$$
\begin{array}{lll}
V_{\text {OUT } v} v V_{S} & \text { when } & V_{\text {SLOPE }} \log \left(V_{I N} / 2.2 \mu V\right)>V_{S E T} \\
V_{\text {OUT }} v 0 & \text { when } & V_{S L O P E} \log \left(V_{I N} / 2.2 \mu V\right)<V_{S E T}
\end{array}
$$

A further use of the separate VOUT and VSET pins is in raising the load-driving current capability by the inclusion of an external NPN emitter follower. More complete information about usage in these various modes is provided in the Applications section.

INTERFACES

This section describes the signal and control interfaces and their behavior. On-chip resistances and capacitances exhibit variations of up to $\pm 20 \%$. These resistances are sometimes temperature dependent and the capacitances may be voltage dependent.

Power-Down Interface, PWDN

The power-down threshold is accurately centered at the midpoint of the supply as shown in Figure 6. If Pin 5 is left unconnected or tied to the supply voltage (recommended), the bias enable current is shut off, and the current drawn from the supply is predominately through a nominal $300 \mathrm{k} \Omega$ chain ($20 \mu \mathrm{~A}$ at 3 V). When grounded, the bias system is turned on. The threshold level is accurately at $\mathrm{V}_{\text {POS }} / 2$. The input bias current at the PWDN pin when operating in the device ON state is approximately $5 \mu \mathrm{~A}$ for $\mathrm{V}_{\mathrm{POS}}=3 \mathrm{~V}$.

Figure 6. Power-Down Threshold Circuitry

Signal Inputs, INHI, INLO

The simplest low frequency ac model for this interface consists of just a 900Ω resistance R_{IN} in shunt with a 1.1 pF input capacitance, C_{IN}, connected across INHI and INLO. Figure 7 shows these distributed in the context of a more complete schematic. The input bias voltage shown is for the enabled chip; when disabled, it will rise by a few hundred millivolts. If the input is coupled via capacitors, this change may cause a low level signal transient to be introduced, having a time constant formed by these capacitors and R_{IN}. For this reason, large-valued coupling capacitors should be well matched; this is not necessary when using the small capacitors found in many impedance transforming networks used at high frequencies.

Figure 7. Input Interface Simplified Schematic
For high frequency use, Figure 8 shows the input impedance plotted on a Smith chart. This measured result of a typical device includes a $191 \mathrm{mil} 50 \Omega$ trace and a 680 pF capacitor to ground from the INLO pin.

Figure 8. Typical Input Impedance

Logarithmic/Error Output, VOUT

The rail-to-rail output interface is shown in Figure 9. Vout can run from within about 50 mV of ground, to within about 100 mV of the supply voltage, and is short-circuit safe to either supply. However, the sourcing load current $\mathrm{I}_{\text {SOURCE }}$ is limited to that provided by the PNP transistor, typically $400 \mu \mathrm{~A}$. Larger load currents can be provided by adding an external NPN transistor (see Applications). The dc open-loop gain of this amplifier is high, and it may be regarded as essentially an integrator having a capacitance of $2 \mathrm{pF}\left(\mathrm{C}_{\mathrm{INT}}\right)$ driven by the current-mode signal generated by the summed outputs of the nine detector stages, which is scaled approximately $4.0 \mu \mathrm{~A} / \mathrm{dB}$.

Figure 9. Output Interface Circuitry
Thus, for a midscale RF input of about 3 mV , which is some 40 dB above the minimum detector output, this current is $160 \mu \mathrm{~A}$, and the output changes by $8 \mathrm{~V} / \mu \mathrm{s}$. When VOUT is connected to VSET, the rise and fall times are approximately 40 ns (for $\mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$).

AD8313

The nominal slew rate is $\pm 2.5 \mathrm{~V} / \mu \mathrm{s}$. The HF compensation technique results in stable operation with a large capacitive load, C_{L}, though the positive-going slew rate will then be limited by $\mathrm{I}_{\text {SOURCE }} / \mathrm{C}_{\mathrm{L}}$ to $1 \mathrm{~V} / \mu \mathrm{s}$ for $\mathrm{C}_{\mathrm{L}}=400 \mathrm{pF}$.

Setpoint Interface, VSET

The setpoint interface is shown in Figure 10. The voltage $\mathrm{V}_{\text {SET }}$ is divided by a factor of 3 in a resistive attenuator of $18 \mathrm{k} \Omega$ total resistance. The signal is converted to a current by the action of the op amp and the resistor R3 ($1.5 \mathrm{k} \Omega$), which balances the current generated by the summed output of the nine detector cells at the input to the previous cell. The logarithmic slope is nominally $3 \times 4.0 \mu \mathrm{~A} / \mathrm{dB} \times 1.5 \mathrm{k} \Omega \approx 18 \mathrm{mV} / \mathrm{dB}$.

Figure 10. Setpoint Interface Circuitry

APPLICATIONS

Basic Connections for Log (RSSI) Mode

Figure 11 shows the AD8313 connected in its basic measurement mode. A power supply of 2.7 V to 5.5 V is required. The power supply to each of the VPOS pins should be decoupled with a $0.1 \mu \mathrm{~F}$ surface-mount ceramic capacitor and a series resistor of 10Ω.
The PWDN pin is shown as grounded. The AD8313 may be disabled by a logic high at this pin. When disabled, the chip current is reduced to about $20 \mu \mathrm{~A}$ from its normal value of 13.7 mA . The logic threshold is at $\mathrm{V}_{\mathrm{POS}} / 2$, and the enable function occurs in about $1.8 \mu \mathrm{~s}$; note, however, that further settling time is generally needed at low input levels. While the input in this case is terminated with a simple 50Ω broadband resistive match, there is a wide variety of ways in which the input termination can be accomplished. These are discussed in the Input Coupling section.
VSET is connected to VOUT to establish a feedback path that controls the overall scaling of the logarithmic amplifier. The load resistance, R_{L}, should not be lower than $5 \mathrm{k} \Omega$ in order that the full-scale output of 1.75 V can be generated with the limited available current of $400 \mu \mathrm{~A}$ max.
As stated in the Absolute Maximum Ratings, an externally applied overvoltage on the VOUT pin that is outside the range 0 V to $\mathrm{V}_{\text {POS }}$ is sufficient to cause permanent damage to the device. If overvoltages are expected on the VOUT pin, a series resistor ($\mathrm{R}_{\text {PROT }}$) should be included as shown. A 500Ω resistor is sufficient to protect against overvoltage up to $\pm 5 \mathrm{~V} ; 1000 \Omega$ should be used if an overvoltage of up to $\pm 15 \mathrm{~V}$ is expected. Since the output stage is meant to drive loads of no more than $400 \mu \mathrm{~A}$, this resistor will not impact device performance for more high impedance drive applications (higher output current applications are discussed in the Increasing Output Current section).

Figure 11. Basic Connections for Log (RSSI) Mode

Operating in Controller Mode

Figure 12 shows the basic connections for operation in controller mode. The link between VOUT and VSET is broken and a setpoint is applied to VSET. Any difference between $V_{\text {SET }}$ and the equivalent input power to the AD 8313 will drive $\mathrm{V}_{\text {OUT }}$ either to the supply rail or close to ground. If $\mathrm{V}_{\mathrm{SET}}$ is greater than the equivalent input power, $\mathrm{V}_{\text {OUT }}$ will be driven toward ground, and vice versa.

Figure 12. Basic Connections for Operation in the Controller Mode

This mode of operation is useful in applications where the output power of an RF power amplifier (PA) is to be controlled by an analog AGC loop (Figure 13). In this mode, a setpoint voltage, proportional in dB to the desired output power, is applied to the VSET pin. A sample of the output power from the PA, via a directional coupler or other means, is fed to the input of the AD8313.

Figure 13. Setpoint Controller Operation
$V_{\text {OUT }}$ is applied to the gain control terminal of the power amplifier. The gain control transfer function of the power amplifier should be an inverse relationship, i.e., increasing voltage decreases gain.

A positive input step on $\mathrm{V}_{\text {SET }}$ (indicating a demand for increased power from the PA) will drive $\mathrm{V}_{\text {OUT }}$ toward ground. This should be arranged to increase the gain of the PA. The loop will settle when $V_{\text {OUT }}$ settles to a voltage that sets the input power to the AD 8313 to the dB equivalent of $\mathrm{V}_{\text {SET }}$.

Input Coupling

The signal may be coupled to the AD8313 in a variety of ways. In all cases, there must not be a dc path from the input pins to ground. Some of the possibilities include: dual input coupling capacitors, a flux-linked transformer, a printed circuit balun, direct drive from a directional coupler, or a narrow-band impedance matching network.

Figure 14 shows a simple broadband resistive match. A termination resistor of 53.6Ω combines with the internal input impedance of the AD 8313 to give an overall resistive input impedance of approximately 50Ω. The termination resistor should preferably be placed directly across the input pins, INHI to INLO, where it serves to lower the possible deleterious effects of dc offset voltages on the low end of the dynamic range. At low frequencies, this may not be quite as attractive, since it necessitates the use of larger coupling capacitors. The two 680 pF input coupling capacitors set the high-pass corner frequency of the network at 9.4 MHz .

Figure 14. A Simple Broadband Resistive Input Termination

The high-pass corner frequency can be set higher according to the equation

$$
f_{3 d B}=\frac{1}{2 \times \pi \times C \times 50}
$$

where: $C=\frac{C 1 \times C 2}{C 1 \div C 2}$
In high frequency applications, the use of a transformer, balun, or matching network is advantageous. The impedance matching characteristics of these networks provide what is essentially a gain stage before the AD 8313 that increases the device sensitivity. This gain effect is further explored in the following matching example.
Figures 15 and 16 show device performance under these three input conditions at 900 MHz and 1900 MHz .
While the 900 MHz case clearly shows the effect of input matching by realigning the intercept as expected, little improvement is seen at 1.9 GHz . Clearly, if no improvement in sensitivity is required, a simple 50Ω termination may be the best choice for a given design based on ease of use and cost of components.

Figure 15. Comparison of Terminated, Matched, and Balanced Input Drive at 900 MHz

Figure 16. Comparison of Terminated, Matched, and Balanced Input Drive at 1900 MHz

Narrow-Band LC Matching Example at 100 MHz

While numerous software programs are available that allow the values of matching components to be easily calculated, a clear understanding of the calculations involved is valuable. A low frequency (100 MHz) value has been used for this exercise because of the deleterious board effects at higher frequencies. RF layout simulation software is useful when board design at higher frequencies is required.
A narrow-band LC match can be implemented either as a series-inductance/shunt-capacitance or as a series-capacitance/ shunt-inductance. However, the concurrent requirement that the AD8313 inputs, INHI and INLO, be ac-coupled, makes a series-capacitance/shunt-inductance type match more appropriate (see Figure 17).

Figure 17. Narrow-Band Reactive Match

AD8313

Typically, the AD 8313 will need to be matched to 50Ω. The input impedance of the AD8313 at 100 MHz can be read from the Smith chart (Figure 8) and corresponds to a resistive input impedance of 900Ω in parallel with a capacitance of 1.1 pF .
To make the matching process simpler, the input capacitance of the AD8313, $\mathrm{C}_{\text {IN }}$, can be temporarily removed from the calculation by adding a virtual shunt inductor (L2), which will resonate away C_{IN} (Figure 18). This inductor will be factored back into the calculation later. This allows the main calculation to be based on a simple resistive-to-resistive match (i.e., 50Ω to 900Ω).
The resonant frequency is defined by the equation

$$
\omega=\frac{1}{\sqrt{L 2 \times C_{I N}}}
$$

therefore: $L 2=\frac{1}{\omega^{2} C_{I N}}=2.3 \mu H$

Figure 18. Input Matching Example
With C_{IN} and L 2 temporarily out of the picture, the focus is now on matching a 50Ω source resistance to a (purely resistive) load of 900Ω and calculating values for $\mathrm{C}_{\text {MATCH }}$ and L 1 .

When $R_{S} R_{I N}=\frac{L 1}{C_{M A T C H}}$
the input will look purely resistive at a frequency given by

$$
f_{0}=\frac{1}{2 \pi \sqrt{L 1 \times C_{M A T C H}}}=100 \mathrm{MHz}
$$

Solving for $C_{M A T C H}$ gives

$$
C_{M A T C H}=\frac{1}{\sqrt{R_{S} R_{I N}}} \times \frac{1}{2 \pi f_{0}}=7.5 p F
$$

Solving for $L 1$ gives

$$
L 1=\frac{\sqrt{R_{S} R_{I N}}}{2 \pi f_{0}}=337.6 \mathrm{nH}
$$

Because $L 1$ and $L 2$ are parallel, they can be combined to give the final value for $L_{M A T C H}$ (i.e.)

$$
L_{M A T C H}=\frac{L 1 \times L 2}{L 1+L 2}=294 n H
$$

C 1 and C 2 can be chosen in a number of ways. First, C 2 can be set to a large value such as 1000 pF , so that it appears as an RF short. C 1 would then be set equal to the calculated value of $\mathrm{C}_{\text {match }}$. Alternatively, C 1 and C 2 can each be set to twice $\mathrm{C}_{\text {MATCH }}$ so that the total series capacitance is equal to $\mathrm{C}_{\text {MATCH }}$. By making C 1 and C 2 slightly unequal (i.e., select C 2 to be about 10% less than C 1) but keeping their series value the same, the amplitude of the signals on INHI and INLO can be equalized so that the AD8313 is driven in a more balanced manner. Any one of the three options detailed above can be used as long as the combined series value of C 1 and C 2 (i.e., $\mathrm{C} 13 \mathrm{C} 2 /(\mathrm{C} 1+\mathrm{C} 2)$) is equal to $\mathrm{C}_{\text {MATCh }}$.
In all cases, the values of $\mathrm{C}_{\text {MATCH }}$ and $\mathrm{L}_{\text {MATCH }}$ must be chosen from standard values. At this point, these values need now be installed on the board and measured for performance at 100 MHz . Because of board and layout parasitics, the component values from the above example had to be tuned to the final values of $\mathrm{C}_{\mathrm{MATCH}}=8.9 \mathrm{pF}$ and $\mathrm{L}_{\mathrm{MATCH}}=270 \mathrm{nH}$ as shown in Table I .
Assuming a lossless matching network and noting conservation of power, the impedance transformation from R_{S} to $R_{I N}(50 \Omega$ to 900Ω) has an associated voltage gain given by

$$
\text { Gain }_{d B}=20 \times \log \sqrt{\frac{R_{I N}}{R_{S}}}=12.6 \mathrm{~d} . \mathrm{B}
$$

Because the AD8313 input responds to voltage and not true power, the voltage gain of the matching network will increase the effective input low-end power sensitivity by this amount. Thus, in this case, the dynamic range will be shifted downward, that is, the 12.6 dB voltage gain will shift the 0 dBm to -65 dBm input range downward to -12.6 dBm to -77.6 dBm . However, because of network losses, this gain will not be fully realized in practice. Refer to Figures 15 and 16 for an example of practical attainable voltage gains.
Table I shows recommended values for the inductor and capacitors in Figure 17 for some selected RF frequencies along with the associated theoretical voltage gain. These values for a reactive match are optimal for the board layout detailed as Figure 29. As previously discussed, a modification of the board layout will produce networks that may not perform as specified. At 2.5 GHz , a shunt inductor is sufficient to achieve match. Consequently, C 1 and C 2 are set sufficiently high that they appear as RF shorts.

Table I. Recommended Values for $\mathbf{C} 1, \mathbf{C} 2$, and $\mathrm{L}_{\text {MATCH }}$ in Figure 17

Freq. (MHz)	$\mathbf{C}_{\text {MATCH }}$ $(\mathbf{p F})$	$\mathbf{C 1}$ $(\mathbf{p F})$	$\mathbf{C} 2$ $(\mathbf{p F})$	$\mathbf{L}_{\text {MATCH }}$ $(\mathbf{n H})$	Voltage $\mathbf{G a i n}(\mathbf{d B})$
100	8.9	22	15	270	12.6
		9	1000	270	
900	1.5	3	3	8.2	9.0
		1.5	1000	8.2	
1900	1.5	3	3	2.2	6.2
		1.5	1000	2.2	
2500	Large	390	390	2.2	3.2

Figure 19 shows the voltage response of the 100 MHz matching network; note the high attenuation at lower frequencies typical of a high-pass network.

Figure 19. Voltage Response of 100 MHz Narrow-Band Matching Network

Adjusting the Log Slope

Figure 20 shows how the log slope may be adjusted to an exact value. The idea is simple: the output at pin VOUT is attenuated by the variable resistor R 2 working against the internal $18 \mathrm{k} \Omega$ of input resistance at the VSET pin. When R2 is zero, the attenuation it introduces is zero, and thus the slope is the basic $18 \mathrm{mV} / \mathrm{dB}$ (note that this value varies with frequency, see TPC 7). When R2 is set to its maximum value of $10 \mathrm{k} \Omega$, the attenuation from VOUT to VSET is the ratio $18 /(18+10)$, and the slope is raised to $(28 / 18) \times 18 \mathrm{mV}$, or $28 \mathrm{mV} / \mathrm{dB}$. At about the midpoint, the nominal scale will be $23 \mathrm{mV} / \mathrm{dB}$. Thus, a 70 dB input range will change the output by $70 \times 23 \mathrm{mV}$, or 1.6 V .

Figure 20. Adjusting the Log Slope
As already stated, the unadjusted log slope varies with frequency from $17 \mathrm{mV} / \mathrm{dB}$ to $20 \mathrm{mV} / \mathrm{dB}$, as shown in TPC 7. By placing a resistor between VOUT and VSET, the slope can be adjusted to a convenient $20 \mathrm{mV} / \mathrm{dB}$ as shown in Figure 21. Table II shows the recommended values for this resistor $\mathrm{R}_{\text {EXT }}$. Also shown are values for $R_{\text {EXT }}$ that increase the slope to approximately $50 \mathrm{mV} / \mathrm{dB}$. The corresponding voltage swings for a -65 dBm to 0 dBm input range are also shown in Table II.

Figure 21. Adjusting the Log Slope to a Fixed Value

Table II. Values for $\mathbf{R}_{\text {EXT }}$ in Figure 21

Frequency $\mathbf{M H z}$	$\mathbf{R}_{\mathbf{E X T}}$ $\mathbf{k V}$	Slope $\mathbf{m V} / \mathbf{d B}$	$\mathbf{V}_{\text {OuT }}$ Swing for $\mathbf{P i n}$ $\mathbf{- 6 5} \mathbf{d B m}$ to $\mathbf{0} \mathbf{~ d B m} \mathbf{-} \mathbf{V}$
100	0.953	20	0.44 to 1.74
900	2.00	20	0.58 to 1.88
1900	2.55	20	0.70 to 2.00
2500	0	20	0.54 to 1.84
100	29.4	50	1.10 to 4.35
900	32.4	50.4	1.46 to 4.74
1900	33.2	49.8	1.74 to 4.98
2500	26.7	49.7	1.34 to 4.57

The value for $\mathrm{R}_{\text {EXT }}$ is calculated using the equation:

$$
R_{E X T}=\frac{(\text { New Slope }- \text { Original Slope })}{\text { Original Slope }} \times 18 \mathrm{k} \Omega
$$

The value for the Original Slope, at a particular frequency, can be read from TPC 7. The resulting output swing is calculated by simply inserting the New Slope value and the intercept at that frequency (TPCs 7 and 10) into the general equation for the AD8313's output voltage:

$$
V_{\text {OUT }}=\text { Slope }\left(P_{I N}-\text { Intercept }\right)
$$

Increasing Output Current

Where it is necessary to drive a more substantial load, one of two methods can be used. In Figure 22, a $1 \mathrm{k} \Omega$ pull-up resistor is added at the output that provides the load current necessary to drive a $1 \mathrm{k} \Omega$ load to 1.7 V for $\mathrm{V}_{\mathrm{S}}=2.7 \mathrm{~V}$. The pull-up resistor will slightly lower the intercept and the slope. As a result, the transfer function of the AD8313 will be shifted upwards (intercept shifts downward).

Figure 22. Increasing AD8313 Output Current Capability
In Figure 23, an emitter-follower is used to provide current gain, when a 100Ω load can readily be driven to full-scale output. While a high β transistor such as the BC848BLT1 (min $\beta=200$) is recommended, a $2 \mathrm{k} \Omega$ pull-up resistor between VOUT and $+\mathrm{V}_{\mathrm{S}}$ can provide additional base current to the transistor.

Figure 23. Output Current Drive Boost Connection

AD8313

In addition to providing current gain, the resistor/potentiometer combination between VSET and the emitter of the transistor increases the log slope to as much as $45 \mathrm{mV} / \mathrm{dB}$, at maximum resistance. This will give an output voltage of 4 V for a 0 dBm input. If no increase in the log slope is required, VSET can be connected directly to the emitter of the transistor.

Effect of Waveform Type on Intercept

Although it is specified for input levels in dBm (dB relative to 1 mW), the AD8313 fundamentally responds to voltage and not to power. A direct consequence of this characteristic is that input signals of equal rms power but differing crest factors will produce different results at the log amp's output.
The effect of different signal waveforms is to vary the effective value of the log amp's intercept upward or downward. Graphically, this looks like a vertical shift in the log amp's transfer function. The device's logarithmic slope, however, is in principle not affected. For example, consider the case of the AD8313 being alternately fed from a continuous wave and a single CDMA channel of the same rms power. The AD8313's output voltage will differ by the equivalent of $3.55 \mathrm{~dB}(64 \mathrm{mV})$ over the complete dynamic range of the device (the output for a CDMA input being lower).
Table III shows the correction factors that should be applied to measure the rms signal strength of a various signal types. A continuous wave input is used as a reference. To measure the rms power of a square wave, for example, the mV equivalent of the dB value given in the table ($18 \mathrm{mV} / \mathrm{dB}$ times 3.01 dB) should be subtracted from the output voltage of the AD8313.

Table III. Shift in AD8313 Output for Signals with Differing Crest Factors

Signal Type	Correction Factor (Add to Output Reading)
CW Sine Wave	0 dB
Square Wave or DC	-3.01 dB
Triangular Wave	+0.9 dB
GSM Channel (All Time Slots On)	+0.55 dB
CDMA Channel	+3.55 dB
PDC Channel (All Time Slots On)	+0.58 dB
Gaussian Noise	+2.51 dB

EVALUATION BOARD

Schematic and Layout

Figure 28 shows the schematic of the evaluation board that was used to characterize the AD8313. Note that uninstalled components are drawn in as dashed.
This is a 3-layer board (signal, ground, and power), with a Duroid dielectric (RT 5880, $\mathrm{h}=5 \mathrm{mil}, \mathrm{e}_{\mathrm{R}}=2.2$). FR4 can also be used, but microstrip dimensions must be recalculated because of the different dielectric constant and board height. The trace layout and silkscreen of the signal and power layers are shown in Figures 24 to 27. A detail of the PCB footprint for the MSOP package and the pads for the matching components are shown in Figure 29.

The vacant portions of the signal and power layers are filled out with ground plane for general noise suppression. To ensure a low impedance connection between the planes, there are multiple through-hole connections to the RF ground plane. While the ground planes on the power and signal planes are used as general-purpose ground returns, any RF grounds related to the input matching network (e.g., C2) are returned directly to the RF internal ground plane.

General Operation

The board should be powered by a single supply in the range of 2.7 V to 5.5 V . The power supply to each of the VPOS pins is decoupled by a 10Ω resistor and a $0.1 \mu \mathrm{~F}$ capacitor.
The two signal inputs are ac-coupled using 680 pF high quality RF capacitors (C1, C2). A 53.6Ω resistor across the differential signal inputs (INHI, INLO) combines with the internal 900Ω input impedance to give a broadband input impedance of 50.6Ω. This termination is not optimal from a noise perspective due to the Johnson noise of the 53.6Ω resistor. Neither does it account for the AD8313's reactive input impedance nor for the decrease over frequency of the resistive component of the input impedance. However, it does allow evaluation of the AD8313 over its complete frequency range without having to design multiple matching networks.
For optimum performance, a narrow-band match can be implemented by replacing the 53.6Ω resistor (labeled L / R) with an RF inductor and replacing the 680 pF capacitors with appropriate values. The Narrow-Band LC Matching Example section includes a table of recommended values for selected frequencies and explains the method of calculation.
Switch 1 is used to select between power-up and power-down modes. Connecting the PWDN pin to ground enables normal operation of the AD8313. In the opposite position, the PWDN pin can either be driven externally (SMA connector labeled EXT ENABLE) to either device state or allowed to float to a disabled device state.
The evaluation board ships with the AD8313 configured to operate in RSSI measurement mode, the logarithmic output appearing on the SMA connector labeled VOUT. This mode is set by the 0Ω resistor (R11), which shorts the VOUT and VSET pins to each other.

Varying the Logarithmic Slope

The slope of the AD8313 can be increased from its nominal value of $18 \mathrm{mV} / \mathrm{dB}$ to a maximum of $40 \mathrm{mV} / \mathrm{dB}$ by removing R11, the 0Ω resistor, which shorts VSET to VOUT. VSET and VOUT are now connected through a $20 \mathrm{k} \Omega$ potentiometer.

Operating in Controller Mode

To put the AD8313 into controller mode, R7 and R11 should be removed, breaking the link between VOUT and VSET. The VSET pin can then be driven externally via the SMA connector labeled EXT VSET IN ADJ.

Increasing Output Current

To increase the output current of $\mathrm{V}_{\text {OUT }}$, set both R3 and R11 to 0Ω and install potentiometer R4 ($1 \mathrm{k} \Omega$ to $5 \mathrm{k} \Omega$).

Figure 24. Layout of Signal Layer

Figure 25. Layout of Power Layer

Figure 26. Signal Layer Silkscreen

Figure 27. Power Layer Silkscreen

Figure 28. Evaluation Board Schematic

Figure 29. Detail of PCB Footprint for Package and Pads for Matching Network

OUTLINE DIMENSIONS

8-Lead microSOIC Package [MSOP] (RM-08)

Dimensions shown in millimeters

Revision History

Location

2/03-Data Sheet changed from REV. B to REV. C.
TPCs and Figures Renumbered .. Universal
Edits to SPECIFICATIONS .. 2
Updated ESD CAUTION ... 4
Updated OUTLINE DIMENSIONS .. 17

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
 Tel: 781/329-4700
 www.analog.com
 Fax: 781/326-8703
 © 2003 Analog Devices, Inc. All rights reserved.

