

Precision MicroPower **Rail to Rail Input/Output Low Noise CMOS Operational Amplifier**

Preliminary Technical Data

FEATURES

Low Offset Voltage: 40µV typ Low Input Bias Current: 1pA max Single-Supply Operation: 1.8 to 5 Volts Low Noise: 27 nV/√Hz Micropower: 50 µA/Amp max. **No Phase Reversal Unity Gain Stable**

APPLICATIONS

Battery Powered Instrumentation Multi-pole Filters Capacitive and Inductive Sensors Low power ASIC Input or Output Amplifier

GENERAL DESCRIPTION

The AD8603, AD8607, AD8609 are single, dual and quad micro-power rail-to-rail input and output amplifiers featuring very low offset voltage, low input voltage and current noise. These amplifiers use a patented trimming technique that achieves superior precision without laser trimming. All are fully specified to operate from +1.8V to +5.0V single supply (or ± 0.9 and $\pm 2.5V$ Dual Supply). The combination of low offsets, low noise, very low input bias currents, and low power consumption make these amplifiers especially useful in portable and loop-powered instrumentation.

The ability to swing rail-to-rail at both the input and output enables designers to buffer CMOS ADCs, DACs, ASICs and other wide output swing devices in low power single supply systems.

The AD8603, single, is available in the tiny 5-lead TSOT-23 package. The AD8607, dual, is available in the 8lead micro-SOIC and narrow SOIC surface mount packages. The AD8609, guad, is available in 14-lead TSSOP and narrow 14-pin SOIC packages. SOT, MSOP and TSSOP versions are available in tape and reel only.

Rev. PrA Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies

5- Lead TSOT-23 8- Lead SOIC (R Suffix) (UJ Suffix) NC 1 8 ר ∣ 5 _ V+ □ V+ AD8603 -IN AD8603 νI +IN OUT 3 4 -IN V- [5 4 +IN [NC NC = NO CONNECT 8- Lead SOIC 8- Lead MSOP (R Suffix) (RM Suffix) OUT A V+ OUTAE 8 ٦V+ -IN A OUT B -IN A 🔲 ОИТ В AD8607 AD8607 +IN A -IN B -IN B +IN A ⊐ +IN B V- [+IN B 14- Lead SOIC 14-Lead (R Suffix) TSSOP OUTAC 🗌 ОИТ D - IN A 🗆 + IN A 🗖 - IN D - IN A 🔽 🗌 - IN D AD8609 V + C ٦V-+IN A 🗌 ٦ +IN D + IN B ____ ⊐ + IN C AD8609 - IN B - IN C **V**+ Γ ٧-OUT B 8 о опт с +IN B 🗌 +IN C - ім в Г _ - IN C OUT B OUT C

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2003 Analog Devices, Inc. All rights reserved.

PIN CONFIGURATIONS

Preliminary Technical Data

TABLE OF CONTENTS

AD8603/7/9—Electrical Characteristics @1.8V
AD8603/7/9 — Electrical Characteristics @5V4
Absolute Maximum Ratings5
Typical Performance Characteristics

REVISION HISTORY

Revision A: Initial Version

Applications	10
Outline Dimensions	11
ESD Caution	12
Ordering Guide	12

ELECTRICAL CHARACTERISTICS

(@ V_S = 1.8V (or ±0.9 Dual Supply), V_{CM} = Vs/2, T_A = +25°C, unless otherwise noted.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	0V <u><</u> V _{CM} ≤1.8V		40	300	μV
		-40° < T _A < +85°C			700	μV
Input Bias Current	IB			0.2	1	pА
		-40° < T _A < +85°C			100	pА
Input Offset Current	I _{os}			0.1	0.5	pА
		-40° < T _A < +85°C			50	pА
Input Voltage Range	IVR		-0.2		1.9	V
Common-Mode Rejection Ratio	CMRR	0V <u><</u> V _{CM} <u><</u> 1.8V	80	98		dB
Large Signal Voltage Gain	A _{VO}	R _L = 10 kΩ , 0.5 <u><</u> Vo <u><</u> 1.3V	50	500		V/mV
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$	-40° < T _A < +85°C		1	4.5	μV/°C
Input Capacitance	Cin			TBD		pF
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	I _L = 1mA	1.65	1.72		V
		-40°C to +85°C	1.6			
Output Voltage Low	V _{OL}	I _L = 1mA		38	60	mV
		-40°C to +85°C			80	mV
Output Current	I _{OUT}	0.5 <u><</u> Vo <u><</u> 1.3V		TBD		mA
Closed Loop Output Impedance	Z _{OUT}	F = 10Khz, Av =1		16		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	1.8V <u><</u> V _S <u><</u> 5V	80	100		dB
Supply Current/Amplifier	I _{SY}	$V_{\rm O} = 0 V$		40	50	μA
		-40° <t<sub>A < +85°C</t<sub>			60	μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	R _L = 10 kΩ		0.1		V/µs
Gain Bandwidth Product	GBP	$R_{L} = 50 \text{ k}\Omega, C_{L} = 100 \text{pF}$		360		Khz
Phase Margin	Øo	$R_{L} = 50 \text{ k}\Omega, C_{L} = 100 \text{pF}$		55		degrees
NOISE PERFORMANCE						
Voltage Noise Density	en	F = 1 khz		27		nV/√Hz
Voltage Noise Density	en	F = 10 khz		22		nV/√Hz
Current Noise Density	in	F = 1 kHz		0.05		pA/√Hz

Preliminary Technical Data

ELECTRICAL CHARACTERISTICS

(@ V_S = 5 V (or ±2.5 Dual Supply), V_{CM} = 0 V, T_A = +25°C, unless otherwise noted.)

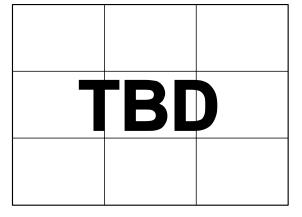
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	V _{OS}	0V <u><</u> V _{CM} ≤5V		40	300	μV
		-40° < T _A < +125°C			750	μV
Input Bias Current	Ι _Β			0.2	1	pА
		-40° < T _A < +85°C			100	pА
		-40° < T _A < +125°C			500	pА
Input Offset Current	I _{OS}			0.1	0.5	pА
		-40° < T _A < +85°C			50	pА
		-40° < T _A < +125°C			250	pА
Input Voltage Range	IVR		-0.2		5.2	V
Common-Mode Rejection Ratio	CMRR	0V <u><</u> V _{СМ} <u><</u> 5V	85	100		dB
Large Signal Voltage Gain	A _{VO}	$R_{\rm L} = 10 \text{ k}\Omega, \ 0.5 \text{V} \le V_0 \le 4.5 \text{V}$	130	500		V/mV
Offset Voltage Drift	$\Delta V_{OS} / \Delta T$	_40° < T _A < +85°C		1	4.5	µV/°C
Input Capacitance	Cin			TBD		pF
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	I _L = 1mA	4.95	4.97		V
· · · · · · · · · · · · · · · · · · ·		-40°C to +125°C	4.9			
		I _L = 10mA	4.65	4.97		V
		-40°C to +125°C	4.55			
Output Voltage Low	V _{OL}	I _L = 1mA		16	30	mV
· · · · · · · · · · · · · · · · · · ·		-40°C to +85°C			50	mV
		I _L = 10mA		160	250	mV
		-40°C to +125°C			300	mV
Output Current	Ι _{Ουτ}	1V <u><</u> Vo <u><</u> 4V		TBD		mA
Closed Loop Output Impedance	Z _{OUT}	f = 10Khz, Av =1		36		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	1.8V <u><</u> V _S <u><</u> 5V	80	100		dB
Supply Current/Amplifier	Isy	V ₀ = 0 V		40	50	μA
		_40° <t<sub>A < +85°C</t<sub>			60	μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	R _L = 10 kΩ		0.1		V/µs
Gain Bandwidth Product	GBP	$R_{L} = 50 \text{ k}\Omega, C_{L} = 100 \text{pF}$		360		Khz
Phase Margin	Øo	$R_{L} = 50 \text{ k}\Omega, C_{L} = 100 \text{pF}$		55		degrees
NOISE PERFORMANCE				1		
Voltage Noise Density	en	f = 1 khz		27		nV/√Hz
Voltage Noise Density	en	f = 10 khz		22		nV/√Hz
Current Noise Density	i _n	f = 1 kHz		0.05		pA/√Hz

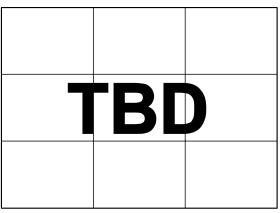
.

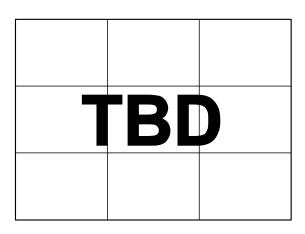
Preliminary Technical Data

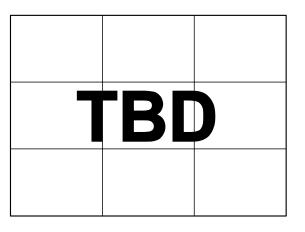
ABSOLUTE MAXIMUM RATINGS

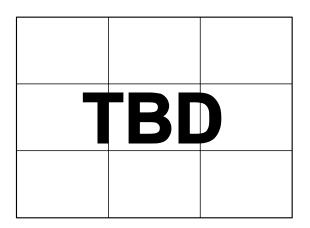
Parameter	Rating
Supply Voltage	6 V
Input Voltage	V _S – to V _S +
Differential Input Voltage	±6 V
Output Short-Circuit Duration	Observe Dearting Curve
Storage Temperature Range	
UJ, R, RM, RU Packages	-65°C to +150°C
Operating Temperature Range	
AD8603, AD8607, AD8609	-40°C to +125°C
Junction Temperature Range	
UJ, R, RM, RU Packages	-65°C to +150°C
Lead Temperature Range	300°C
(Soldering, 60 Sec)	

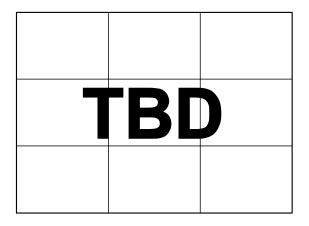

Package Type	θ _{JA}	θυς	Unit
5-Lead TSOT (UJ)	230	146	°C/W
8-Lead MSOP (RM)	190	44	°C/W
8-Lead SOIC (R)	158	43	°C/W
14-Pin SOIC (R)	120	36	°C/W
14-Pin TSSOP (RU)	180	35	°C/W

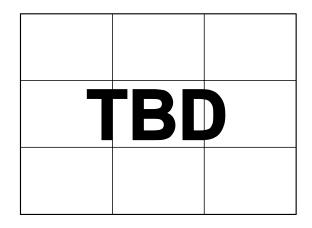

 θ_{JA} is specified for the worst-case conditions, i.e., θ_{JA} is specified for device soldered in circuit board for surface-mount packages.

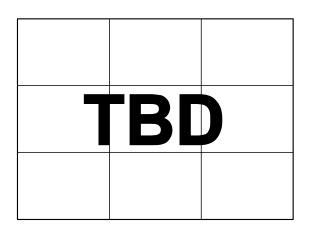

Absolute maximum ratings apply at 25°C, unless otherwise noted.

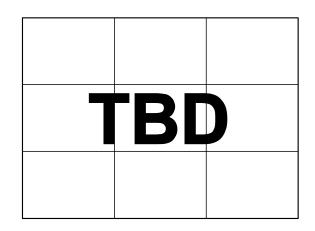

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other condition s above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

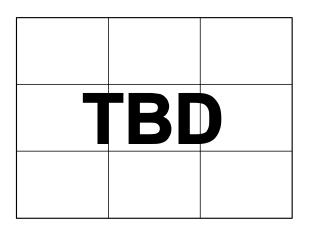

TYPICAL PERFORMANCE CHARACTERISTICS

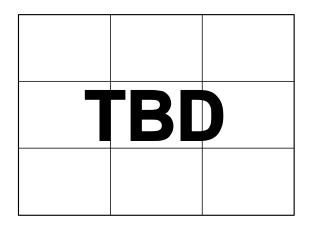


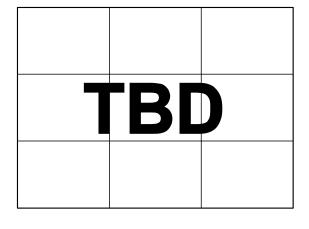


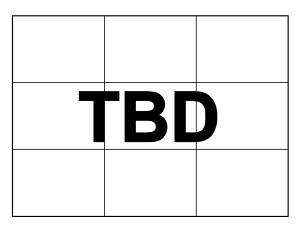


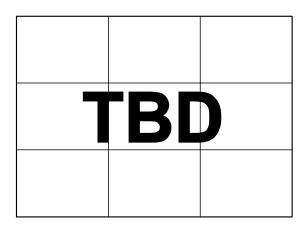


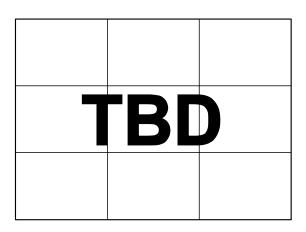

B	

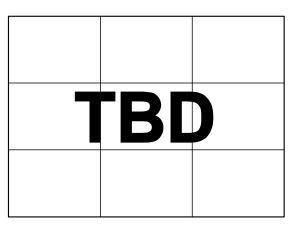


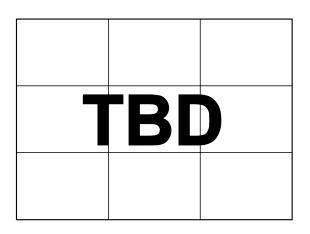


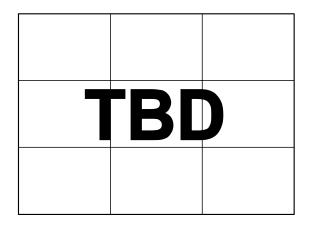


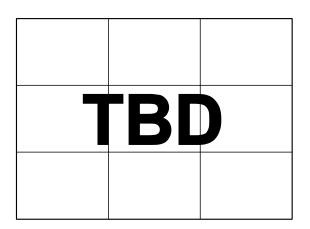


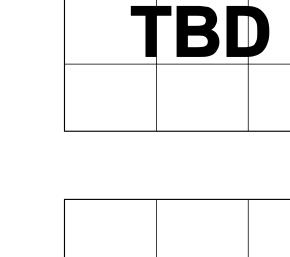


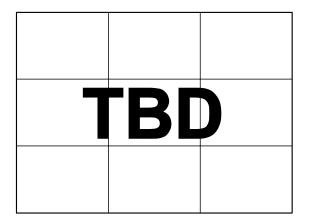


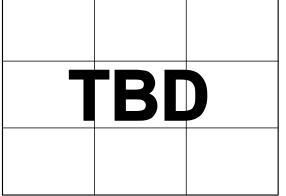


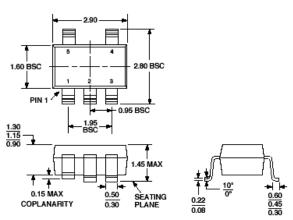







B	

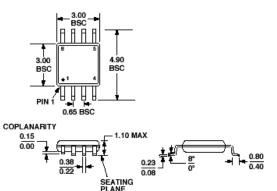



APPLICATIONS

Preliminary Technical Data

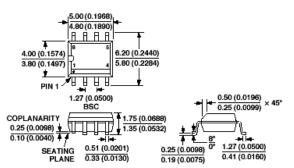
OUTLINE DIMENSIONS

5-Lead Plastic Surface-Mount Package [SOT-23]


(RT-5) Dimensions shown in millimeters

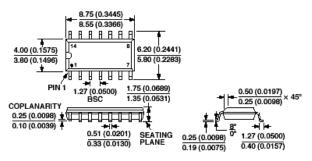
COMPLIANT TO JEDEC STANDARDS MO-178AA

8-Lead microSOIC Package [MSOP] (RM-8)


Dimensions shown in millimeters

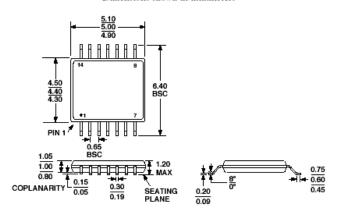
COMPLIANT TO JEDEC STANDARDS MO-187AA

8-Lead Standard Small Outline Package [SOIC] (R-8) Narrow Body


Dimensions shown in millimeters and (inches)

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN COMPLIANT TO JEDEC STANDARDS MS-012AA

14-Lead Standard Small Outline Package [SOIC] (R-14) Narrow Body


Dimensions shown in millimeters and (inches)

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN COMPLIANT TO JEDEC STANDARDS MS-012AB

14-Lead Thin Shrink Small Outline Package [TSSOP]

(RU-14) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-153AB-1

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option	Branding Info
AD8603AUJ	-40°C to 125°C	5-Pin TSOT	UJ-5	BFA
AD8607ARM	-40°C to +125°C	8-Pin MSOP	RM-8	A00
AD8607AR	-40°C to +125°C	8-Pin SOIC	R-8	
AD8609AR	-40°C to +125°C	14-Pin SOIC	R-14	
AD8609ARU	-40°C to +125°C	14-Pin TSSOP	RU-14	

© 2003 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective companies. C03726-0-04/03(0)

www.analog.com