

14-Bit High Speed Analog to Digital Converter

Models ADC1130, ADC1131

FEATURES

14-BIT Resolution and Accuracy Fast 12μs Conversion Time (ADC1131J/K) Low 10ppm/°C Maximum Gain TC User Choice of Input Range No Missing Codes

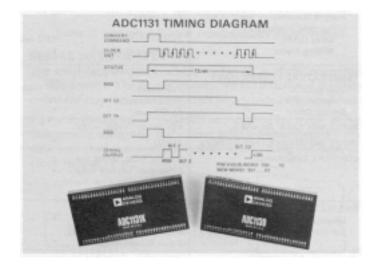
APPLICATIONS

Wide Band Data Digitizing Multi-Channel Computer Interface High Accuracy Data Acquisition X-Ray Tomography Nuclear Accelerator Instrumentation

GENERAL DESCRIPTION

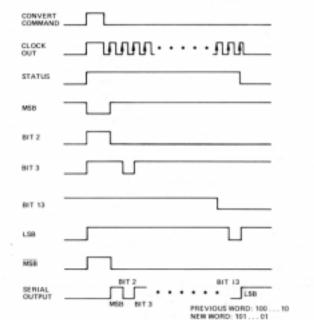
The ADC11130 and ADCI 131 are high speed analog-to-digital converters packaged in a small 2" x 4" x 0.4" (51 x 102 x 10mm) module, which perform complete 14-bit conversions in 25µs and 12µs respectively. Using the successive approximations technique, they convert analog input voltages into natural binary, offset binary, or two's complement coded outputs. Data outputs are provided in both parallel and non-return-to-zero serial form.

Four analog input ranges are available: 0V to +20V, 0V to +10V, $\pm 10V$, and $\pm 5V$. The user selects the desired range by making appropriate connections to the module terminals. The ADC1130 and ADC1131 can also be connected so as to perform conversions of less than 14 bit resolution with a proportionate decrease in conversion time.


TIMING

As shown in Figure 1, the leading edge of the convert command set the MSB output to Logic "0" and the CLOCK OUT, STATUS, MSB, and BIT 2 through BIT 12 outputs to Logic "1". Nothing further happens until the convert command returns to Logic "0", at which time the clock starts to run and the conversion proceeds.

With the MSB in the Logic "0" state, the internal digital-to-analog converter's output is compared with the analog input. If the D/A output is less than the analog input, the first "0" to "1" clock transition resets the MSB to Logic "1". If the D/A output is greater than the analog input, the MSB remains at Logic "0".


The first "0" to "1" clock transition also sets the BIT 2 output to Logic 0" and another comparison is made. This process continues through ach successive bit until the BIT 14 (LSB) comparison is completed.

Information furnished by Intronics is believed to be accurate and reliable. However, no responsibility is assumed by Intronics for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intronics.

At this point the STATUS and CLOCK OUT return to Logic "0" and the conversion cycle ends.

The serial data output is of the non-return-to-zero (NRZ) format. The data is available, MSB first, 20ns after each of the fourteen "0" to "1" clock transitions.

<u> II intronics</u>

1400 Providence Highway, Building #2 Norwood, MA 02062 Phone (781) 551-5500 FAX (781) 551-5555 www.intronicspower.com