ADG201A/ADG202A

FEATURES

44V Supply Maximum Rating
$\pm 15 \mathrm{~V}$ Analog Signal Range
Low Ron (60§)
Low Leakage (0.5 nA)
Break Before Make Switching
Extended Plastic Temperature Range
$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
Low Power Dissipation (33 mW)
Available in 16-Lead DIP/SOIC and
20-Lead PLCC/LCCC Packages
Superior Second Source:
ADG201A Replaces DG201A, HI-201
ADG202A Replaces DG202

GENERAL DESCRIPTION

The ADG201A and ADG202A are monolithic CMOS devices comprising four independently selectable switches. They are designed on an enhanced LC 2 MOS process which gives an increased signal handling capability of $\pm 15 \mathrm{~V}$. These switches also feature high switching speeds and low R_{ON}.
The ADG201A and ADG202A consist of four SPST switches. They differ only in that the digital control logic is inverted. Al devices exhibit break before make switching action. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

1. Extended Signal Range:

These switches are fabricated on an enhanced LC 2 MOS process, resulting in high breakdown and an increased analog signal range of $\pm 15 \mathrm{~V}$.
2. Single Supply Operation:

For applications where the analog signal is unipolar (0 V to 15 V), the switches can be operated from a single +15 V supply.
3. Low Leakage:

Leakage currents in the range of 500 pA make these switches suitable for high precision circuits. The added feature of Break before Make allows for multiple outputs to be tied together for multiplexer applications while keeping leakage errors to a minimum.

ADG201A	ADG202A	SWITCH
IN	IN	CONDITION
0	1	ON
1	0	OFF

Table 1. Truth Table

REV. A
Information furnished by Analog Devices is believed to be accurate
and reliable. However, no responsibility is assumed by Analog Devices
for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

NOTES

Sanple 25° C to ensure compliance.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise stated)

V ${ }_{\text {DI }}$ to $\mathrm{V}_{\text {SS }}$. 44V	Power Dissipation (Any Package)
$\mathrm{V}_{\text {DD }}$ to GND . 25 V	Up to $+75^{\circ} \mathrm{C}$. 470 mW
$\mathrm{V}_{\text {SS }}$ to GND . -25 l	Derates above $+75^{\circ} \mathrm{C}$ by $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Analog Inputs ${ }^{1}$	Operating Temperature
Voltage at S, D V SS -0.3 V to	Commercial (K Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	Industrial (B Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Continuous Current, S or D 30 mA	Extended (T Version) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Pulsed Current S or D	Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
1 ms Duration, 10\% Duty Cycle 70 mA	Lead Temperature (Soldering 10sec) $+300^{\circ} \mathrm{C}$
Digital Inputs ${ }^{1}$	
Voltage at IN Vss -2 C to	NOTE
$\mathrm{V}_{\mathrm{DD}}+2 \mathrm{~V} \text { or }$ 20 mA , Whichever Occurs First	${ }^{1}$ Overvoltage at IN, S or D will be clamped by diodes. Current should be limited to the Maximum Rating above.

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one Absolute Maximum Rating may be applied at any one time.

ADG201A/ADG202A

CAUTION

ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

WARNING!

ORDERING GUIDE

Model ${ }^{1}$	Temperature Range	Package Option
ADG201AKN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-16$
ADG201AKR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-16 \mathrm{~A}$
ADG201AKP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{P}-20 \mathrm{~A}$
ADG201ABQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{Q}-16$
ADG201ATQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-16$
ADG201ATE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{E}-20 \mathrm{~A}$
ADG202AKN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-16$
ADG202AKR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-16 \mathrm{~A}$
ADG202AKP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{P}-20 \mathrm{~A}$
ADG202ABQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{Q}-16$
ADG202ATQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-16$
ADG202ATE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{E}-20 \mathrm{~A}$

NOTES
${ }^{\text {N }}$ To order MIL-STD-883, Class B processed parts, add/883B to T grade par
numbers. See Analog Devices Military Products Databook (1990) for military data sheet.
${ }^{2} \mathrm{E}=$ Leadless Ceramic Chip Carrier (LCCC); $\mathrm{N}=$ Plastic DIP; $\mathrm{R}=0.15$ Small Outline IC (SOIC); $\mathbf{P}=$ Plastic Leaded Chip Carrier (PLCC); $Q=C$ erdip.

PIN CONFIGURATIONS

ADG201A/ADG202A FUNCTIONAL DIAGRAM

REV. A

ADG201A/ADG202A - Typical Performance Characteristics

The switches are guaranteed functional with reduced single or dual supplies down to 4.5V

RON as a Function of $V_{D}\left(V_{S}\right)$: Dual Supply Voltage

Leakage Current as a Function of Temperature (Note: Leakage Currents Reduce as the Supply Voltages Reduce)

Switching Time vs. Supply Voltage (Dual Supply)

$R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$: Single Supply Voltage

Trigger Level vs. Power Supply Voltage: Dual or Single Supply Voltage

Switching Time vs. Supply Voltage (Single Supply)

Test Circuit 6. Off Isolation

Test Circuit 7. Channel-to-Channel Crosstalk

ADG201A/ADG202A

TERMINOLOGY		t_{ON}	Delay time between the 50% and 90% points of the digital input and switch "ON" condition
$\mathrm{R}_{\text {ON }}$	Ohmic resistance between terminals OUT and S		
$\mathrm{R}_{\text {ON }}$ Match	Difference between the $\mathrm{R}_{\text {ON }}$ of any two channels	LoFF	
$\mathrm{I}_{\text {S }}$ (OFF)	Source terminal leakage current when the switch is off	$\mathrm{t}_{\text {OPEN }}$	"OFF" time measured between 50% points of
$\mathrm{I}_{\mathrm{D}}(\mathrm{OFF})$	Drain terminal leakage current when the switch is off		both switches, which are connected as a multiplexer, when switching from one address state to another
$\mathrm{I}_{\mathrm{D}}(\mathrm{ON})$	Leakage current that flows from the closed switch into the body	$\mathrm{V}_{\text {INL }}$	Maximum Input Voltage for a Logic Low Minimum Input Voltage for a Logic High
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog voltage on terminal D, S	INH $\mathbf{I}^{1 N L}\left(\mathbf{I}_{\text {INI }}\right)$	Minimum Input Voltage for a Logic High Input current of the digital input
$\mathrm{C}_{\text {S }}$ (OFF)	Switch input capacitance "OFF" condition	$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$ $V_{D D}$	
C_{D} (OFF)	Switch output capacitance "OFF" condition	$\mathrm{V}_{\text {SS }}$	Most negative voltage supply
$\mathrm{C}_{\text {IN }}$	Digital input capacitance	$\mathrm{I}_{\text {DD }}$	Positive supply current
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	Input or output capacitance when the switch is on	$\mathrm{I}_{\text {SS }}$	Negative supply current

MECHANICAL INFORMATION

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

16-Pin Plastic (N-16)

16-Pin Cerdip (Q-16)

SOIC Package
(R-16A)

20-Terminal Leadless Ceramic Chip Carrier (E-20A)

20-Terminal Plastic Leaded Chip Carrier (P-20A)

