LC²MOS Quad SPST Switches

 ADG211A/ADG212A
FEATURES

44V Supply Maximum Rating
$\pm 15 \mathrm{~V}$ Analog Signal Range
Low Ron (115Ω max)
Low Leakage (0.5nA typ)
Break Before Make Switching
Single Supply Operation Possible
Extended Plastic Temperature Range
$\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$)
TLLCMOS Compatible
Available in 16-Lead DIP/SOIC and

20-Lead PLCC Packages

Superior Second Source:
ADG211A Replaces DG21
ADG212A Replaces DG212

GENERAL DESCRIPTION

The ADG211A and ADG212A are monolithic CMOS devices comprising four independently selectable switches. They are designed on an enhanced LC ${ }^{2}$ MOS process which gives an in creased signal handling capability of $\pm 15 \mathrm{~V}$. These switches also feature high switching speeds and low R_{ON}.
The ADG211A and ADG212A consist of four SPST switches. They differ only in that the digital control logic is inverted. In multiplexer applications, all switches exhibit break-before-make switching action when driven simultaneously. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

SWITCHES SHOWN FOR A LOGIC "1" INPU

PRODUCT HIGHLIGHTS

1. Extended Signal Range

These switches are fabricated on an enhanced LC 2 MOS process, resulting in high breakdown and an increased analog signal range of $\pm 15 \mathrm{~V}$.
2. Single Supply Operation

For applications where the analog signal is unipolar (0 V to 15 V), the switches can be operated from a single +15 V supply.
3. Low Leakage:

Leakage currents in the range of 500 pA make these switches suitable for high precision circuits. The added feature of Break before Make allows for multiple outputs to be tied together for multiplexer applications while keeping leakage errors to a minimum

ADG211A IN	ADG212A	SWITCH IN
0	1	CONDITION
1	0	ON

Table I. Truth Table

REV. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

	$\begin{aligned} & \text { ADG211AKN } \\ & \text { ADG212AKN } \end{aligned}$			
Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Test Conditions
ANALOG SWITCH Analog Signal Range R_{ON} R_{ON} vs. $\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$ R_{ON} Drift R_{ON} Match	$\begin{aligned} & \pm 15 \\ & 115 \\ & \\ & 20 \\ & 0.5 \\ & 5 \end{aligned}$	$\begin{aligned} & \pm 15 \\ & 175 \end{aligned}$	Volts Ω max \% typ \%/ ${ }^{\circ} \mathrm{Ctyp}$ \% typ	$-10 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant+10 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=1 \mathrm{~mA},$ Test Circuit 1 $\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=1 \mathrm{~mA}$
I_{S} (OFF) OFF Input Leakage I_{D} (OFF) OFF Output Leakage $\mathrm{I}_{\mathrm{D}}(\mathrm{ON})$ ON Channel Leakage	$\begin{aligned} & 0.5 \\ & 5 \\ & 0.5 \\ & 5 \\ & 0.5 \\ & 5 \\ & \hline \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 200 \\ & \hline \end{aligned}$	nAtyp $n A \max$ nA typ $n A$ max nA typ nA max	$\mathrm{V}_{\mathrm{D}}= \pm 14 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=\mp 14 \mathrm{~V}$; Test Circuit 2 $V_{D}= \pm 14 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=\mp 14 \mathrm{~V} ;$ Test Circuit 2 $V_{D}=V_{S}= \pm 14 V ;$ Test Circuit 3
DIGITALCONTROL $V_{\text {INH }}$, Input High Voltage $V_{\text {INL }}$, Input Low Voltage $\mathrm{I}_{\mathbf{I N L}}$ or $\mathrm{I}_{\mathbf{I N H}}$ $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance	5	$\begin{aligned} & 2.4 \\ & 0.8 \\ & 1 \end{aligned}$	$V_{\text {min }}$ $V_{\text {max }}$ $\mu \mathrm{A}$ max pF typ	TTL Compatibility is Independent of V_{L}
DYNAMIC CHARACTERISTICS $\begin{aligned} & \mathrm{t}_{\mathrm{OPEN}}{ }^{1} \\ & \mathrm{t}_{\mathrm{ON}}{ }^{1} \end{aligned}$ $\mathrm{t}_{\mathrm{OFF}}{ }^{1}$ OFF Isolation Channel-to-Channel Crosstalk C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{S}}, \mathrm{C}_{\mathrm{D}}(\mathrm{ON})$ QiNJ, Charge Injection	30 600 450 80 80 5 5 16 20		ns typ ns max ns max dB typ dB typ pF typ pF typ pF typ pCtyp	Test Circuit 4 Test Circuit 5 Test Circuit 5 $V_{S}=10 \mathrm{~V}(\mathrm{p}-\mathrm{p}) ; \mathrm{f}=100 \mathrm{kHz}$ $\mathrm{R}_{\mathrm{L}}=75 \Omega$; Test Circuit 6 Test Circuit 7 $\begin{aligned} & \mathrm{R}_{\mathrm{S}}=0 \Omega ; \mathrm{C}_{\mathrm{L}}=1000 \mathrm{pF} ; \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \\ & \text { Test Circuit } 8 \end{aligned}$
POWER SUPPLY $I_{D D}$ I_{DD} Iss ISS I_{L}	$\begin{aligned} & 0.6 \\ & 1 \\ & 0.1 \\ & 0.2 \\ & 0.9 \end{aligned}$		mA typ mA max mA typ $m A \max$ $\mathrm{mA}_{\text {max }}$	Digital Inputs $=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$

NOTE
${ }^{1}$ Sample tested at $25^{\circ} \mathrm{C}$ to ensure compliance.
Specifications subject to change without notice

ADG211A/ADG212A

ABSOLUTE MAXIMUM RATINGS*

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise stated)

V_{DD} to $\mathrm{V}_{\text {SS }}$	44 V
$\mathrm{V}_{\text {DD }}$ to GND	25 V
$\mathrm{V}_{\text {ss }}$ to GND	-25V
V_{L} to GND	-0.3V, 25 V
Analog Inputs ${ }^{1}$	
Voltage at S, D	$\mathrm{V}_{\mathrm{Ss}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Continuous Current, S or D	30 mA
Pulsed Current S or D	
1ms Duration, 10\% Duty Cycle	70 mA

Digital Inputs

Voltage at IN V $\mathrm{V}_{\text {Ss }}-2 \mathrm{~V}$ to
$\mathrm{V}_{\mathrm{DD}}+2 \mathrm{~V}$ or
20 mA , Whichever Occurs First
Power Dissipation (Any Package)
Up to $+75^{\circ} \mathrm{C}$. 470 mW
Derates above $+75^{\circ} \mathrm{C}$ by $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10sec) $+300^{\circ} \mathrm{C}$

Note

Overvoltage at IN, S or D will be clamped by diodes. Current should be limited to the Maximum Rating above.
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one Absolute Maximum Rating may implied. Exposure to absolut at any one time.

CAUTION

ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protect ed; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed

PIN CONFIGURATIONS

DIP, SOIC

PLCC

ORDERING GUIDE

Model	Temperature Range	Package Option
ADG211AKN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-16$
ADG211AKR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-16 \mathrm{~A}$
ADG211AKP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{P}-20 \mathrm{~A}$
ADG212AKN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-16$
ADG212AKR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-16 \mathrm{~A}$
ADG212AKP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{P}-20 \mathrm{~A}$
*N $=$ Plastic DIP; $\mathrm{R}=0.15^{\prime \prime}$ Small Outline IC (SOIC); $\mathrm{P}=$ Plastic Leaded Chip Carrier (PLCC)..		

ADG211A/ADG212A - Typical Performance Characteristics

The switches can comfortably operate anywhere in the 10 V to 15 V single or dual supply range, with only a slight degradation in performance. The following graphs show the relevant performance curves. The test circuits and test conditions are given in a following section, "Test Circuits"

Figure 1. Ronas a Function of $V_{D}\left(V_{S}\right)$: Dual ± 15 Supplies

Figure 3. RoN as a Function of $V_{D}\left(V_{S}\right):$ Dual $\pm 10 \mathrm{~V}$ Supplies

Figure 5. Leakage Current as a Function of Temperature (Note: Leakage Current Reduces as the Supply Voltages Reduce)

Figure 2. Ron as a Function of $V_{D}\left(V_{S}\right)$: Single +15 V Supply

Figure 4. $R_{\text {ON }}$ as a Function of $V_{D}\left(V_{S}\right)$: Single +10 V Supply

Figure 6. Trigger Levels vs. Power Supply Voltage, Dual or Single Supply Voltage

Figure 7. toN vs. Supply Voltage, (Dual Supply)

Figure 9. toff vs. Supply Voltage, (Dual Supply)

Figure 11. Off Isolation and Channel-to-Channel Crosstalk vs. Supply Voltage

Figure 8. ton vs. Supply Voltage, (Single Supply)

Figure 10. toff Vs. Supply Voltage, (Single Supply)

Figure 12. Charge Injection vs. Source Voltage (V_{S}) for Dual and Single 15V Supplies

REV. B

ADG211A/ADG212A - Typical Performance Characteristics

Figure 13. Charge Injection vs. Source Voltage for Dual and Single 10V Supplies

Figure 15. Iss vs. Supply Voltage, (Dual Supply)

Figure 14. IDD vs. Supply Voltage, (Dual Supply)

Figure 16. IDD vs. Supply Voltage, (Single Supply)

TERMINOLOGY

R_{ON}
R_{ON} Match
I_{S} (OFF)
$\mathrm{I}_{\mathrm{D}}(\mathrm{OFF})$
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
$\mathrm{C}_{\mathrm{S}}(\mathrm{OFF})$
C_{D} (OFF)
$\mathrm{C}_{\text {IN }}$
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$
t_{ON}
$\mathrm{I}_{\mathrm{D}}(\mathrm{ON}) \quad$ Leakage current that flows from the closed switch
Ohmic resistance between terminals OUT and S Difference between the R_{ON} of any two channels Source terminal leakage current when the switch is off
Drain terminal leakage current when the switch into the body
Analog voltage on terminal D, S
Switch input capacitance "OFF" condition
Switch output capacitance "OFF" condition Digital input capacitance
Input or output capacitance when the switch is on
Delay time between the 50% and 90% points of the digital input and switch "ON" condition

Delay time between the 50% and 90% points of the digital input and switch "OFF" condition "OFF" time measured between 50% points of both switches, which arc connected as a multiplexer, when switching from one address state to another
Maximum Input Voltage for a Logic Low Minimum Input Voltage for a Logic High Input current of the digital input
Most positive voltage supply
Most negative voltage supply
Logic supply voltage
Positive supply current
Negative supply current

*BOTH THE BUFFER AND INVERTER SHOULD
HAVE THE SAME PROPAGATION DELAY.
Test Circuit 4

ADG211A/ADG212A

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm)

16-Pin Plastic (N-16)

16-Lead Narrow Body SOIC (R-16A)

20-Terminal Plastic Leaded Chip Carrier (P-20A)

