FEATURES
44V Supply Maximum Rating
$\pm 15 \mathrm{~V}$ Analog Signal Range
Low Ron (60ת)
Low Leakage (0.5 nA)
Break-Before-Make Switching
Extended Plastic Temperature Range
$\left(-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$)
Low Power Dissipation ($\mathbf{2 5 . 5 \mathrm { mW } \text {) }) ~}$
$\mu \mathrm{P}$, TTL, CMOS Compatible
Available in 16-Lead DIP/SOIC and
20-Lead PLCC/LCCC Packages
Surface Mount Packages
Superior DG221 Replacement

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADG221 and ADG222 are monolithic CMOS devices comprising four independently selectable switches. On-chip latches facilitate microprocessor interfacing. They are designed on an enhanced LC ${ }^{2}$ MOS process which gives an increased signal handling capability of $\pm 15 \mathrm{~V}$. These switches also feature high switching speeds and low R_{ON}.

The ADG221 and ADG222 consist of four SPST switches. They differ only in that the digital control logic is inverted. All devices exhibit break before make switching action. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

PRODUCT HIGHLIGHTS

1. Easily Interfaced

Digital inputs are latched with a $\overline{\mathrm{WR}}$ signal for microprocessor interfacing. A 5 V regulated supply is internally generated permitting wider tolerances on the supplies without affecting the TTL digital input switching levels.
2. Single Supply Operation:

For applications where the analog signal is unipolar (0 V to 15 V), the switches can be operated from a single +15 V supply.
3. Low Leakage:

Leakage currents in the range of 500 pA make these switches suitable for high precision circuits. The added feature of Break-before-Make switching allows for multiple outputs to be tied together for multiplexer applications while keeping leakage errors to a minimum.

$\overline{\text { WR }}$	ADG221	ADG222	SWITCH IN
0	0	1	ON
0	1	0	OFF
1	X	X	Retains Previous
			Switch Condition

Table I. Truth Table

REV. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700 Fax: 617/326-8703 Twx: 710/394-6577 Telex: 924491 Cable: ANALOG NORWOODMASS

NOTE
$\mathrm{t}_{\mathrm{ON}}, \mathrm{t}_{\mathrm{OFF}}$ are the same for both IN and WR digital input changes.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise stated)

V_{DD} to $\mathrm{V}_{\text {SS }}$. 44V	Power Dissipation (Any Package)
V ${ }_{\text {DD }}$ to GND . 25 V	Up to $+75^{\circ} \mathrm{C}$. 470 mW
V ${ }_{\text {SS }}$ to GND . -25 V	Derates above $+75^{\circ} \mathrm{C}$ by $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Analog Inputs ${ }^{1}$	Operating Temperature
Voltage at S, D V $\mathrm{VSS}-0.3 \mathrm{~V}$ to	Commercial (K Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$	Industrial (B Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Continuous Current, S or D 30 mA	Extended (T Version) $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Pulsed Current S or D	Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
lms Duration, 10\% Duty Cycle 70 mA	Lead Temperature (Soldering 10sec) $+300^{\circ} \mathrm{C}$
Voltage at $\mathrm{I} \mathrm{V}_{2} \times \overline{\mathrm{V}} \mathrm{R}$. $\mathrm{V}_{S S}-2 \mathrm{~V}$ to	NOTE
$\mathrm{V}_{\mathrm{DD}}+2 \mathrm{~V} \text { or }$ 20 mA , Whichever Occurs First	${ }^{1}$ Overvoltage at $\mathrm{IN}, \overline{\mathrm{WR}}, \mathrm{S}$ or D will be clamped by diodes. Current should be limited to the Maximum Rating above.

*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one Absolute Maximum Rating may be applied at any one time.

CAUTION

ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective

WARNING!

 m foam should be discharged to the destination socket before devices are removed.
PIN CONFIGURATIONS

Model 1	Temperature Range	Package Option
ADG221KN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	N-16
ADG221KR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-16A
ADG221KP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{P}-20 \mathrm{~A}$
ADG221BQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{Q}-16$
ADG221TQ	$-5^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-16$
ADG221TE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{E}-20 \mathrm{~A}$
ADG222KN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	N-16
ADG222KR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-16A
ADG222KP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	P-20A
ADG222BQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Q-16
ADG222TQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-16$
ADG222TE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{E}-20 \mathrm{~A}$

NOTES

${ }^{\prime}$ To order MIL-STD-883, Class B processed parts, add /883B to T grade part numbers. See Analog Devices Military Products Databook (1990) for ${ }^{2}$ military data sheet.
${ }^{2} \mathbf{N}=$ Plastic DIP; $\mathrm{R}=0.15^{\prime \prime}$ Small Outline IC (SOIC); $\mathbf{P}=$ Plastic Leaded Chip Carrier (PLCC); $\mathrm{Q}=$ Cerdip; $\mathrm{E}=$ Leadless Ceramic Chip Carrier (LCCC).

TIMING AND CONTROL SEQUENCE
Figure 2 shows the timing sequence for latching the switch digital inputs (IN1 - IN4). The latches are level sensitive and, therefore, while $\overline{\mathrm{WR}}$ is held low the latches are transparent and the switches respond to the digital inputs. The digital inputs are latched on the rising edge of $\overline{W R}$.

ADG221/ADG222 - Typical Performance Characteristics

The switches are guaranteed functional with reduced single or dual supplies down to 4.5 V

$R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$: Dual Supply Voltage

Leakage Current as a Function of Temperature (Note: Leakage Currents Reduce as the Supply Voltages Reduce)

Switching Times vs. Supply Voltage (Dual Supply)

$R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$: Single Supply Voltage

Trigger Level vs. Power Supply Voltage: Dual or Single Supply Voltage

Switching Times vs. Supply Voltage (Single Supply)

ADG221/ADG222

TERMINOLOGY
$\mathrm{R}_{\text {ON }}$
$\mathrm{R}_{\text {ON }}$ Match
Ohmic resistance between terminals OUT and S Difference between the R_{ON} of any two channels Source terminal leakage current when the switch is off
Drain terminal leakage current when the switch
is off
Leakage current that flows from the closed switch into the body
Analog voltage on terminal D, S
C_{S} (OFF) \quad Switch input capacitance "OFF" condition
Switch output capacitance "OFF" condition Digital input capacitance
D (OFF
$\mathrm{C}_{\text {IN }}$
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$
I_{D} (OFF) Drain terminal leakage current when the switch is on \qquad
Delay time between the 50% and 90% points of the digital input and switch "ON" condition Delay time between the 50% and 90% points of the digital input and switch "OFF" condition "OFF" time measured between 50% points of both switches, which are connected as a multiplexer, when switching from one address state to another
Maximum Input Voltage for a Logic Low Minimum Input Voltage for a Logic High
Input current of the digital input
Most positive voltage supply
Most negative voltage supply
Positive supply current
Negative supply current

