LC²MOS 4/8 Channel High Performance Analog Multiplexers

ADG408/ADG409

FEATURES

44 V Supply Maximum Ratings
$\mathbf{V}_{\text {ss }}$ to V_{DD} Analog Signal Range
Low On Resistance (100Ω max)
Low Power (Isupply $<75 \mu \mathrm{~A}$)
Fast Switching
Break-Before-Make Switching Action
Plug-in Replacement for DG408/ DG409

APPLICATIONS

Audio and Video Routing
Automatic Test Equipment
Data Acquisition Systems
Battery Powered Systems
Sample and Hold Systems
Communication Systems

GENERAL DESCRIPTION

T he AD G 408 and AD G 409 are monolithic C M OS analog multiplexers comprising 8 single channels and four differential channels respectively. The AD G 408 switches one of eight inputs to a common output as determined by the 3-bit binary address lines A0, A1 and A2. The ADG 409 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF.
The AD G 408/AD G 409 are designed on an enhanced $L C^{2}$ M OS process which provides low power dissipation yet gives high switching speed and low on resistance. Each channel conducts equally well in both directions when ON and has an input signal range which extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. All channels exhibit break before make switching action preventing momentary shorting when switching channels. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

The AD G 408/AD G 409 are improved replacements for the D G 408/D G 409 Analog M ultiplexers.

REV. 0

[^0]FUNCTIONAL BLOCK DIAGRAMS

PRODUCT HIGHLIGHTS

1. Extended Signal Range

The AD G 408/AD G 409 are fabricated on an enhanced $L^{2}{ }^{2} \mathrm{M}$ OS process giving an increased signal range that extends to the supply rails.
2. Low Power Dissipation

3 Low Ron
4. Single Supply Operation

For applications where the analog signal is unipolar, the AD G 408/AD G 409 can be operated from a single rail power supply. T he parts are fully specified with a single +12 V power supply and will remain functional with single supplies as low as +5 V .

One Technology Way, P.O. Box 9106, Nonwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

Fax: 617/326-8703

ADG408/ADG409- SPECIFICATIONS

DUAL SUPPLY1 ($\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{S S}=-15 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted)

Parameter	$\begin{array}{r} B \\ +25^{\circ} \mathrm{C} \end{array}$	sion $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\begin{array}{r} \mathrm{TVe} \\ +25^{\circ} \mathrm{C} \end{array}$	ersion $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Units	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range Ron $\Delta \mathrm{R}_{\text {ON }}$	$\begin{aligned} & 40 \\ & 100 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 125 \end{aligned}$	$\begin{aligned} & 40 \\ & 100 \\ & 15 \end{aligned}$	$\begin{aligned} & V_{S S} \text { to } V_{D D} \\ & 125 \end{aligned}$	V Ω typ Ω max Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{D}}=+10 \mathrm{~V},-10 \mathrm{~V} \end{aligned}$
```LEAKAGE CURRENTS Source OFF Leakage Is (OFF) D rain OFF Leakage ID (OFF) AD G 408 AD G 409 Channel ON Leakage \(I_{D}, I_{S}(O N)\) AD G 408 AD G 409```	$\begin{aligned} & \pm 0.5 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \\ & \pm 100 \\ & \pm 50 \\ & \\ & \pm 100 \\ & \pm 50 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \\ & \pm 100 \\ & \pm 50 \\ & \\ & \pm 100 \\ & \pm 50 \end{aligned}$	nA max   nA max nA max   nA max nA max	$\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=\mp 10 \mathrm{~V} \text {; }$   Test Circuit 2 $\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} ; \mathrm{V}_{\mathrm{S}}=\mp 10 \mathrm{~V} \text {; }$   Test Circuit 3 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \text {; }$   T est Circuit 4
DIGITAL IN PUTS   Input High Voltage, $\mathrm{V}_{\text {INH }}$   Input Low Voltage, $\mathrm{V}_{\text {INL }}$   Input Current   $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$   $C_{\text {IN }}$, Digital Input C apacitance	8	$\begin{gathered} 2.4 \\ 0.8 \\ \\ \pm 10 \end{gathered}$	8	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 10 \end{aligned}$	$V$ min   $V$ max   $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & V_{I N}=0 \text { or } V_{D D} \\ & f=1 \mathrm{MHz} \end{aligned}$
DYNAMIC CHARACTERISTICS²   t transition $^{\text {then }}$   $t_{\text {OPEN }}$   $\mathrm{t}_{\mathrm{ON}}$ (EN)   $t_{\text {OFF }}$ (EN)   C harge Injection   OFF Isolation   Channel-to-C hannel Crosstalk   $\mathrm{C}_{\mathrm{S}}$ (OFF)   $C_{D}$ (OFF)   AD G 408   AD G 409   $C_{D}, C_{S}(O N)$   AD G 408   AD G 409	10   85   150   20   -75   85   11   40   20   54   34	$\begin{aligned} & 120 \\ & 250 \\ & 10 \\ & 125 \\ & 225 \\ & 65 \\ & 150 \end{aligned}$	10   85   150   20   $-75$   85   11   40   20   54   34	$\begin{aligned} & 120 \\ & 250 \\ & 10 \\ & 125 \\ & 225 \\ & 65 \\ & 150 \end{aligned}$	ns typ ns max ns min ns typ ns max ns typ ns max pC typ dB typ dB typ pF typ pF typ pF typ pF typ pF typ	
```POWER REQUIREMENTS IDD Iss IDD```	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \\ & 1 \\ & 5 \\ & 500 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	1 5 1 5 $500$	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V}$

[^1]
SINGLE SUPPLY ${ }^{1}\left(V_{D D}=+12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}, G N D=0 \mathrm{~V}\right.$, unless otherwise noted)

Parameter	B $+25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { sion } \\ & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{r} \mathrm{TV} \\ +25^{\circ} \mathrm{C} \end{array}$	$\begin{aligned} & \text { ersion } \\ & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Units	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range R_{on}	90	0 to $\mathrm{V}_{\text {D }}$	90	0 to V_{DD}	$\begin{aligned} & \mathrm{V} \\ & \Omega \text { typ } \end{aligned}$	$\mathrm{V}_{\mathrm{D}}=+3 \mathrm{~V},+10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}$
```LEAKAGE CURRENTS Source OFF Leakage Is (OFF) Drain OFF Leakage \(I_{D}\) (OFF) AD G 408 ADG409 Channel ON Leakage \(I_{D}, I_{S}(O N)\) AD G 408 AD G 409```	$\begin{aligned} & \pm 0.5 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \\ & \pm 100 \\ & \pm 50 \\ & \pm 100 \\ & \pm 50 \end{aligned}$	$\begin{aligned} & \pm 0.5 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 50 \\ & \pm 100 \\ & \pm 50 \\ & \\ & \pm 100 \\ & \pm 50 \end{aligned}$	nA max   nA max nA max   nA max nA max	$\mathrm{V}_{\mathrm{D}}=8 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} / 8 \mathrm{~V}$;   Test Circuit 2   $\mathrm{V}_{\mathrm{D}}=8 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} / 8 \mathrm{~V}$;   Test Circuit 3 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=8 \mathrm{~V} / 0 \mathrm{~V} \text {; }$   Test Circuit 4
DIGITAL IN PUTS   Input High Voltage, $\mathrm{V}_{\text {INH }}$   Input Low Voltage, $\mathrm{V}_{\text {INL }}$   Input Current   $I_{\text {INL }}$ or $I_{\text {INH }}$   $\mathrm{C}_{\mathrm{IN}}$, Digital Input C apacitance	8	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 10 \end{aligned}$	8	$\begin{gathered} 2.4 \\ 0.8 \\ \pm 10 \end{gathered}$	$V$ min   V max   $\mu \mathrm{A} \max$ pF typ	$\begin{aligned} & V_{\text {IN }}=0 \text { or } V_{D D} \\ & f=1 \mathrm{MHz} \end{aligned}$
DYNAMIC CHARACTERISTICS²   $\mathrm{t}_{\text {transition }}$   $t_{\text {OPEN }}$   $t_{0 N}(E N)$   $t_{\text {OFF }}$ (EN)   Charge Injection   OFF Isolation   Channel-to-C hannel C rosstalk   $\mathrm{C}_{\mathrm{S}}$ (OFF)   $C_{D}$ (OFF)   AD G 408   AD G 409   $C_{D}, C_{S}(O N)$   AD G 408   AD G 409	130   10   140   60   5      -75   85   11   40   20   54   34		130 10 140 60 5 -75 85 11 40 20 54 34		$\begin{aligned} & \text { ns typ } \\ & \text { pC typ } \\ & \text { dB typ } \\ & \text { dB typ } \\ & \text { pF typ } \end{aligned}$	
POWER REQUIREMENTS   $I_{D D}$   $I_{D D}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \\ & 500 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \\ & 500 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=2.4 \mathrm{~V} \end{aligned}$

## NOTES

${ }^{1} \mathrm{~T}$ emperature ranges are as follows: B Versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; T Versions: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

## ADG408/ADG409

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$   ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)	
$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +	
$V_{D D}$ to GND	0.3 V to +25 V
$V_{\text {SS }}$ to GND	+0.3 V to -25 V
Analog, Digital Inputs ${ }^{2} \ldots . . V_{S S}-2 \mathrm{~V}$	V to $\mathrm{V}_{\mathrm{DD}}+2 \mathrm{~V}$ or 20 mA , Whichever Occurs First
Continuous Current, S or D	20 mA
Peak Current, S or D   (Pulsed at $1 \mathrm{~ms}, 10 \%$ D uty	iA
O perating T emperature R ange	
Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (T Version)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage T emperature R ange	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
C erdip Package, Power D issipation	900 mW
$\theta_{\text {JA }}$, T hermal Impedance	$76^{\circ} \mathrm{C} / \mathrm{W}$
Lead T emperature, Soldering (10 sec)	c) . . . . . . . . . $+300^{\circ} \mathrm{C}$
Plastic Package, Power Dissipation	470 mW
$\theta_{\text {JA }}$, T hermal Impedance	$117^{\circ} \mathrm{C} / \mathrm{W}$
Lead T emperature, Soldering (10 sec)	c) . . . . . . . . . $+260^{\circ} \mathrm{C}$
SOIC Package, Power Dissipation	600 mW
$\theta_{\text {JA }}$, T hermal Impedance	$77^{\circ} \mathrm{C} / \mathrm{W}$
Lead T emperature, Soldering	
Vapor Phase (60 sec)	$+215^{\circ} \mathrm{C}$
Infrared (15 sec)	$+220^{\circ} \mathrm{C}$

## ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

$V_{D D}$ to $V_{S S}$................................................... . +44 V
$V_{D D}$ to GND .................................. -0.3 V to +25 V
V Ss to GND . . . . . . . . . . . . . . . . . . . . . . . . . . . +0.3 V to -25 V
Analog, Digital Inputs ${ }^{2} \ldots . \mathrm{V}_{\text {SS }}-2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+2 \mathrm{~V}$ or 20 mA , Whichever Occurs First
Continuous Current, S or D ......................... . 20 mA
Peak Current, S or D
(Pulsed at 1 ms, 10\% D uty Cycle max) . . .......... 40 mA
perating T emperature Range
Industrial (B Version) . . . . . . . . . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (T Version) . . . . . . . . . . . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage T emperature Range . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . $+150^{\circ} \mathrm{C}$
erdip Package, Power D issipation
Lead Temperature, Soldering (10 sec) . . . . . . . . . . . $+300^{\circ} \mathrm{C}$
Plastic Package, Power Dissipation . . . . . . . . . . . . . . 470 mW
$\theta_{\mathrm{JA}}, \mathrm{T}$ hermal Impedance . . . . . . . . . . . . . . . . . . . . . $117^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\mathrm{JA}}$, T hermal Impedance . . . . . . . . . . . . . . . . . . . . . . $77^{\circ} \mathrm{C} / \mathrm{W}$
Lead T emperature, Soldering
Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . $+220^{\circ} \mathrm{C}$

NOTES
${ }^{1}$ Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2} O$ vervoltages at A, EN , S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

ORDERING INFORMATION

Model $^{\mathbf{1}}$	Temperature Range	Package Option ${ }^{\mathbf{2}}$
AD G 408BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-16$
AD G 408BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-16 \mathrm{~A}$
AD G 408T Q	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-16$
AD G 409B N	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-16$
AD G 409BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{R}-16 \mathrm{~A}$
AD G 409T Q	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-16$

## NOTES

${ }^{1}$ T o order M IL-ST D-883, C lass B processed parts, add /883B to T grade part numbers.
${ }^{2} \mathrm{~N}=$ Plastic DIP; R = 0.15" Small Outline IC (SOIC); Q = Cerdip.

## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although these devices features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS (DIP/SOIC)


ADG 408 Truth Table

A2	A1	A0	EN	ON   SWITCH
$X$	$X$	$X$	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	1	0	1	6
1	1	1	1	8

ADG409 Truth Table

AI	AO	EN	ON SWITCH   PAIR
$X$	$X$	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

## TERMINOLOGY

$V_{\text {DD }}$	M ost positive power supply potential.
$\mathrm{V}_{\text {SS }}$	M ost negative power supply potential in dual supplies. In single supply applications, it may be connected to ground.
GND	Ground ( 0 V ) reference.
$\mathrm{R}_{\text {ON }}$	Ohmic resistance between D and S .
$\Delta \mathrm{R}_{\text {ON }}$	Difference between the $R_{\text {on }}$ of any two channels.
$\mathrm{I}_{S}(\mathrm{OFF})$	Source leakage current when the switch is off.
$I_{\text {D }}$ (OFF)	D rain leakage current when the switch is off.
$I_{D}, I_{S}(O N)$	Channel leakage current when the switch is on.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog voltage on terminals D, S.
$\mathrm{C}_{S}$ (OFF)	Channel input capacitance for "OFF" condition.
$C_{\text {d }}$ (OFF)	C hannel output capacitance for "OFF" condition.
$C_{D}, C_{S}(O N)$	"ON" switch capacitance.
$\mathrm{C}_{\text {IN }}$	Digital input capacitance.
$t_{\text {ON }}(E N)$	Delay time between the $50 \%$ and $90 \%$ points of the digital input and switch "ON" condition.
$\mathrm{t}_{\text {OFF }}$ (EN)	Delay time between the $50 \%$ and $90 \%$ points of the digital input and switch "OFF" condition.
$t_{\text {transition }}$	Delay time between the $50 \%$ and $90 \%$ points of the digital inputs and the switch "ON" condition when switching from one address state to another.
$t_{\text {OPEN }}$	"OFF" time measured between the $80 \%$ point of both switches when switching from one address state to another.
$\mathrm{V}_{\text {INL }}$	$M$ aximum input voltage for logic " 0 ."
$\mathrm{V}_{\text {INH }}$	M inimum input voltage for logic " 1.0
$\mathrm{I}_{\text {INI }}\left(\mathrm{I}_{\text {INH }}\right)$	Input current of the digital input.
Crosstalk	A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.
Off Isolation	A measure of unwanted signal coupling through an "OFF" channel.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
$I_{\text {DD }}$	Positive supply current.
$\mathrm{I}_{\text {S }}$	N egative supply current.



Figure 1. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$ : Dual Supply Voltage


Figure 2. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures


Figure 3. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$


Figure 4. Ron as a Function of $V_{D}\left(V_{S}\right)$ : Single Supply Voltage


Figure 5. $R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures


Figure 6. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$


Figure 7. Switching Time vs. $V_{\text {IN }}$ (Bipolar Supply)


Figure 8. Switching Time vs. Single Supply


Figure 9. Positive Supply Current vs. Switching Frequency


Figure 10. Switching Time vs. $V_{\text {IN }}$ (Single Supply)


Figure 11. Switching Time vs. Bipolar Supply


Figure 12. Negative Supply Current vs. Switching Frequency


Figure 13. Off Isolation vs. Frequency

## Test Circuits



Test Circuit 1. On Resistance


Test Circuit 2. Is (OFF)


Figure 14. Crosstalk vs. Frequency


Test Circuit 3. $I_{D}$ (OFF)


Test Circuit 4. ID (ON)


Test Circuit 5. Switching Time of Multiplexer, $t_{\text {TRANSITION }}$


Test Circuit 6. Break-Before-Make Delay, topen


Test Circuit 7. Enable Delay, $t_{\text {ON }}(E N)$, $t_{\text {OFF }}$ (EN)


Test Circuit 8. Charge Injection


Test Circuit 9. OFF Isolation


Test Circuit 10. Channel-to-Channel Crosstalk

## OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).


Cerdip (Q-16)


SO (Narrow Body) (R-16A)



[^0]:    Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]:    NOTES
    ${ }^{1} \mathrm{~T}$ emperature ranges are as follows: B Versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$; T Versions: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
    ${ }^{2}$ Guaranteed by design, not subject to production test.
    Specifications subject to change without notice.

