ADG508A/ADG509A

FEATURES

44V Supply Maximum Rating
V_{Ss} to V_{DD} Analog Signal Range
Single/Dual Supply Specifications
Wide Supply Ranges (10.8 V to 16.5 V)
Extended Plastic Temperature Range
$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
Low Power Dissipation (28mW max)
Low Leakage (20pA typ)
Available in 16-Lead DIP/SOIC and
20-Lead PLCC/LCCC Packages
Superior Alternative to:
DG508A, HI-508
DG509A, HI-509

GENERAL DESCRIPTION

The ADG508A and ADG509A are CMOS monolithic analog multiplexers with 8 channels and dual 4 channels respectively The ADG508A switches one of 8 inputs to a common output depending on the state of three binary addresses and an enable input. The ADG509A switches one of 4 differential inputs to a common differential output depending on the state of two binary addresses and an enable input. Both devices have TTL and 5V CMOS logic compatible digital inputs.
The ADG508A and ADG509A are designed on an enhanced LC ${ }^{2}$ MOS process which gives an increased signal capability of V_{SS} to V_{DD} and enables operation over a wide range of supply voltages. The devices can comfortably operate anywhere in the 10.8 V to 16.5 V single or dual supply range. These multiplexers also feature high switching speeds and low R_{ON}.

PRODUCT HIGHLIGHTS

1. Single/Dual Supply Specifications with a Wide Tolerance: The devices are specified in the 10.8 V to 16.5 V range for both single and dual supplies
2. Extended Signal Range:

The enhanced LC^{2} MOS processing results in a high breakdown and an increased analog signal range of V_{SS} to V_{DD}.
3. Break-Before-Make Switching:

Switches are guaranteed break-before-make so that input signals are protected against momentary shorting.
4. Low Leakage:

Leakage currents in the range of 20 pA make these multiplexers suitable for high precision circuits.

REV. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAMS

A0 A1 A2 EN

AO A1 EN

Model ${ }^{1}$	Temperature Range	Package Option ${ }^{2}$
ADG508AKN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	N-16
ADG508AKR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-16A
ADG508AKP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	P-20A
ADG508ABQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Q-16
ADG508ATQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Q-16
ADG508ATE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	E-20A
ADG509AKN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	N-16
ADG509AKR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	R-16A
ADG509AKP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	P-20A
ADG509ABQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Q-16
ADG509ATQ	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Q-16
ADG509ATE	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	E-20A

NOTES

To order MIL-STD-883, Class B processed parts, add /883B to part number. See Analog Devices Military Products Databook (1990) for military data sheet.
$\mathrm{E}=$ Leadless Ceramic Chip Carrier (LCCC); $\mathrm{N}=$
Plastic DIP; P = Plastic Leaded Chip Carrier (PLCC);
$\mathrm{Q}=$ Cerdip; $\mathrm{R}=0.15^{\prime \prime}$ Small Outline IC (SOIC).

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700

ADG508A/ADG509A — SPECIFICATIONS

DUAL SUPPLY $\left(v_{00}=+10.8 v\right.$ to $+16.5 v, V_{S S}=-10.8 V$ to $-16.5 v$ unless otherwise speciified)

Parameter	ADG508A ADG509A K Version		ADG508A ADG509A B Version		ADG508A ADG509A TVersion		Units	Comments
	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{Cto} \\ & +85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		
ANALOG SWITCH Analog Signal Range	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{DD}} \end{aligned}$	V_{ss} $V_{D D}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ss}} \\ & \mathrm{~V}_{\mathrm{DD}} \end{aligned}$	$\begin{aligned} & V_{\text {min }} \\ & V_{\text {max }} \end{aligned}$				
R_{ON}	$\begin{aligned} & 280 \\ & 450 \\ & 300 \end{aligned}$	600 400	$\begin{aligned} & 280 \\ & 450 \\ & 300 \end{aligned}$	600 400	$\begin{aligned} & 280 \\ & 450 \\ & 300 \end{aligned}$	600 400	Ω typ Ω max Ω max Ω max	$\begin{aligned} & -10 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant+10 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=1 \mathrm{~mA} ; \text { Test Circuit } 1 \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}(\pm 10 \%), \mathrm{V}_{\mathrm{SS}}=-15 \mathrm{~V}(\pm 10 \%) \\ & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}(\pm 5 \%), \mathrm{V}_{\mathrm{SS}}=-15 \mathrm{~V}(\pm 5 \%) \end{aligned}$
R_{ON} Drift R_{ON} Match	0.6 5		0.6 5		$\begin{aligned} & 0.6 \\ & 5 \end{aligned}$		$\% /{ }^{\circ} \mathrm{C}$ typ \%typ	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0, \mathrm{I}_{\mathrm{DS}}=1 \mathrm{~mA} \\ & -10 \mathrm{~V} \leqslant \mathrm{~V}_{\mathrm{S}} \leqslant+10 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=1 \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\mathrm{S}}(\mathrm{OFF})$, Off Input Leakage		50		50	0.02	50	nA typ nA max	$\mathrm{V} 1= \pm 10 \mathrm{~V}, \mathrm{~V} 2=\mp 10 \mathrm{~V} ;$ Test Circuit 2
I_{D} (OFF), Off Output Leakage ADG508A ADG509A	$\begin{aligned} & 0.04 \\ & 1 \\ & 1 \end{aligned}$	100 50	$\begin{aligned} & 0.04 \\ & 1 \\ & 1 \end{aligned}$	100 50	$\begin{aligned} & 0.04 \\ & 1 \\ & 1 \end{aligned}$	100 50	nA typ nA max nA max	$\mathrm{V} 1=+10 \mathrm{~V}, \mathrm{~V} 2=\mp 10 \mathrm{~V} ; \text { Test Circuit } 3$
$\begin{aligned} & \mathrm{I}_{\mathrm{D}}(\mathrm{ON}), \text { On Channel Leakage } \\ & \text { ADG508A } \\ & \text { ADG509A } \end{aligned}$	$\begin{aligned} & 0.04 \\ & 1 \end{aligned}$	100 50	$\begin{aligned} & 0.04 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \end{aligned}$	nA typ $n A$ max $n A$ max	$\mathrm{V} 1=\mathrm{V} 2= \pm 10 \mathrm{~V} ; \text { Test Circuit } 4$
$I_{\text {DIFF }}$, Differential Off Output Leakage (ADG509A only)		25		25		25	nA max	$\mathrm{V} 1= \pm 10 \mathrm{~V}, \mathrm{~V} 2=\mp 10 \mathrm{~V} ;$ Test Circuit 5
DIGITALCONTROL $\mathrm{V}_{\mathrm{INH}}$, Input High Voltage $\mathrm{V}_{\text {INL }}$, Input Low Voltage $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ $\mathrm{C}_{\text {IN }}$ Digital Input Capacitance	8	$\begin{aligned} & 2.4 \\ & 0.8 \\ & 1 \end{aligned}$	8	$\begin{aligned} & 2.4 \\ & 0.8 \\ & 1 \end{aligned}$	8	$\begin{aligned} & 2.4 \\ & 0.8 \\ & 1 \end{aligned}$	V min V max $\mu \mathrm{A}$ max pF max	$\mathrm{V}_{\mathrm{IN}}=0$ to V_{DD}
DYNAMICCHARACTERISTICS $\mathrm{t}_{\text {transition }}{ }^{1}$	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	400	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	400	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	400	ns typ ns max	$\mathrm{Vl}= \pm 10 \mathrm{~V}, \mathrm{~V} 2=\mp 10 \mathrm{~V} ;$ Test Circuit 6
topen 1		10	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	10	$\begin{aligned} & 50 \\ & 25 \end{aligned}$	10	ns typ ns min	Test Circuit 7
$\mathrm{LON}^{(E N)}{ }^{1}$		400	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	400	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	400	ns typ ns max	Test Circuit 8
$\left.\mathrm{tofF}^{(E N}\right)^{1}$	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	400	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	400	$\begin{aligned} & 200 \\ & 300 \end{aligned}$	400	nstyp ns max	Test Circuit 8
OFF Isolation					$\begin{aligned} & 68 \\ & 50 \end{aligned}$		dB typ dB min	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \\ & \mathrm{~V}_{\mathrm{S}}=7 \mathrm{~V} \mathrm{rms}, \mathrm{f}=100 \mathrm{kHz} \end{aligned}$
C_{S} (OFF)	5		5		5		pF typ	$\mathrm{V}_{\text {EN }}=0.8 \mathrm{~V}$
C_{D} (OFF)								
ADG508A	22		22		22		pF typ	$\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$
ADG509A QinJ, Charge Injection	11 4		$\begin{aligned} & 11 \\ & 4 \end{aligned}$		$\begin{aligned} & 11 \\ & 4 \end{aligned}$		$\begin{aligned} & \text { pFtyp } \\ & \text { pC typ } \end{aligned}$	$\mathrm{R}_{S}=0 \Omega, \mathrm{~V}_{S}=0$; Test Circuit 9
$\begin{aligned} & \text { POWER SUPPLY } \\ & \mathrm{I}_{\mathrm{DD}} \end{aligned}$	0.6	1.5	0.6	1.5	0.6	1.5	mA typ $m A$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
$\mathrm{I}_{\text {SS }}$	20	0.2	20	0.2	20	0.2	$\mu \mathrm{A}$ typ $m A \max$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
Power Dissipation	10	28	10	28	10	28	mW typ mW max	

NOTE
'Sample tested at $25^{\circ} \mathrm{C}$ to ensure compliance.
Specifications subject to change without notice.

ADG508A/ADG509A
SINGLE SUPPLY $V_{\left(V_{D O}\right.}=+10.8 V$ to $+16.5 V, V_{S S}=G N D=0 V$ unless otherwise noted. $)$

Parameter	ADG508A ADG509A K Version		ADG508A ADG509A B Version		ADG508A ADG509A TVersion		Units	Comments	
	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$			
Analog Signal Range	GND	GND	GND	GND	GND	GND	$V_{\text {min }}$		
	$V_{\text {DD }}$	V_{DD}	$V_{\text {DD }}$	$\mathrm{V}_{\text {D }}$	$V_{D D}$	V_{DD}	\checkmark max		
$\mathrm{R}_{\text {ON }}$	500		500		500		Ω typ	$\mathrm{GND} \leq \mathrm{V}_{S} \leq+10 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=0.5 \mathrm{~mA}$ Test; Circuit 1	
	700	1000		1000	700	1000	Ω max		
$\mathrm{R}_{\text {ON }}$ Drift	0.6		0.6		0.6		\%/ ${ }^{\circ} \mathrm{Ctyp}$	$\mathrm{V}_{\mathrm{S}}=0, \mathrm{I}_{\mathrm{DS}}=0.5 \mathrm{~mA}$	
R_{ON} Match	5		5		5		\% typ	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{S}} \leq+10 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=0.5 \mathrm{~mA}$	
$\mathrm{I}_{\text {S }}(\mathrm{OFF})$, Off Input Leakage	0.02	50	0.02	50		50	nA typ nA max	$\begin{aligned} & \mathrm{V} 1=+10 \mathrm{~V} / \mathrm{GND}, \mathrm{~V} 2=\mathrm{GND} /+10 \mathrm{~V}, \\ & \text { Test Circuit } 2 \end{aligned}$	
I_{D} (OFF), Off Output Leakage ADG508A	0.04		0.04		0.04			$\mathrm{V} 1=+10 \mathrm{~V} / \mathrm{GND}, \mathrm{V} 2=\mathrm{GND} /+10 \mathrm{~V} ;$	
	1	100	0.0	100		100	$n A$ max	Test Circuit 3	
ADG509A	1	50	1	50		50	$n \mathrm{~A}$ max		
$\mathrm{I}_{D}(\mathrm{ON})$, On Channel Leakage	0.04		0.04		0.04		nA typ	$\mathrm{V} 1=\mathrm{V} 2=+10 \mathrm{~V} / \mathrm{GND} ;$	
ADG508A	1	100		100		100	$n \mathrm{~A}$ max	Test Circuit 4	
ADG509A $\mathrm{I}_{\text {DIFF }}$, Differential Off Output Leakage (ADG509A only)	1	50		50		50	$n A$ max		
		25		25		25	$n A$ max	$\begin{aligned} & \mathrm{V} 1=+10 \mathrm{~V} / \mathrm{GND}, \mathrm{~V} 2=\mathrm{GND} /+10 \mathrm{~V} ; \\ & \text { Test Circuit } 5 \end{aligned}$	
DIGITALCONTROL									
$\mathrm{V}_{\text {INH }}$, Input High Voltage		2.4		2.4		2.4	V min		
$\mathrm{V}_{\text {INL }}$, Input Low Voltage		0.8		0.8		0.8	V max		
$\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ $\mathrm{C}_{\text {IN }}$ Digital Input Capacitance	8	1	8	1	8	1	${ }_{\text {M }} \mathrm{AF}$ max $^{\text {max }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{to}^{\text {V }}$ DD	
	300		300		300		ns typ	$\mathrm{Vl}=+10 \mathrm{~V} / \mathrm{GND}, \mathrm{V} 2=\mathrm{GND} /+10 \mathrm{~V}$; Test Cicuit 6	
	450	600	450	600	450	600	ns max		
topen $^{\prime}$	50		50		50		nstyp	Test Circuit 7	
	25	10		10		10	ns min		
$\mathrm{t}_{\mathrm{ON}}(\mathrm{EN})^{1}$	250		250		250		ns typ	Test Circuit 8	
		600		600		600	ns max		
$\mathrm{t}_{\text {OFF }}(\mathrm{EN})^{1}$	250		250		250		nstyp	Test Circuit 8	
	450	600	450	600	450	600	ns max		
OFF Isolation	68		68		68		dB typ	$\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$,	
	50		50		50		dB min	$\mathrm{V}_{\mathrm{S}}=3.5 \mathrm{~V} \mathrm{rms}, \mathrm{f}=100 \mathrm{kHz}$	
C_{S} (OFF)	5		5		5		pF typ	$\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$	
C_{D} (OFF)									
ADG508A	22		22		22		pF typ	$\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}$	
ADG509A	11		11		11		pF typ		
Qinj, Charge Injection	4		4		4		pC typ	$\mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{~V}_{S}=0 \mathrm{~V} ;$ Test Circuit 9	
POWER SUPPLY									
I_{DD}	0.6		0.6		0.6		mA typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$	
		1.5		1.5		1.5	mA max		
Power Dissipation	10		10		10		mW typ		
		25		25		25	mW max		
NOTE ${ }^{1}$ Sample tested at $25^{\circ} \mathrm{C}$ to ensure compliance.					$\mathrm{C}_{\text {IN }}$		Digital input capacitance		
Specifications subject to change without notice.					$\mathrm{t}_{\text {OFF }}$ (EN)		Delay time between the 50% and 10% points of the digital input and switch "OFF" condition		
TERMINOLOGY					${ }_{\text {transition }}$		Delay time between the 50% and 90% points of		
$\mathrm{R}_{\mathrm{ON}} \quad$ Ohmic resi	nce bet	ween term	nals D	and S			the dig	al inputs and switch "ON" condition	
R_{ON} Match Difference	tween t	R_{ON} of	any tw	channels			when s	itching from one address state to	
R_{ON} Drift \quad Change in R	N versu	tempera					another		
Source terminal leakage current when the switch is off					topen		"OFF" time measured between 50% points of both switches when switching from one address		
Drain terminal leakage current when the switchis off					$\mathrm{V}_{\text {INL }}$		state to another		
$\mathrm{I}_{\mathrm{D}}(\mathrm{ON})$	Leakage current that flows from the closed switch into the body				$\mathrm{V}_{\text {INH }}$		Minimum input voltage for Logic " 1 "		
						($\mathrm{I}_{\text {INH }}$)	Input	rrent of the digital input	
$\mathrm{V}_{\mathrm{S}}\left(\mathrm{V}_{\mathrm{D}}\right) \quad$ Analog volt	en ter	minal S or			$\mathrm{V}_{\text {D }}$		Most p	sitive voltage supply	
C_{S} (OFF) Channel inp	capaci	ance for '	OFF"	ondition	V_{S}		Most n	gative voltage supply	
C_{D} (OFF)	ut capac	itance for	"OFF"		$\mathrm{I}_{\text {D }}$		Positive	supply current	
					$\mathrm{I}_{\text {SS }}$		Negati	supply current	

ADG508A/ADG509A

ABSOLUTE MAXIMUM RATINGS*
($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Power Dissipation (Any Package)	
Up to $+75^{\circ} \mathrm{C}$	470 mW
Derates above $+75^{\circ} \mathrm{C}$ by	$6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature	
Commercial (K Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Extended (T Version)	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

NOTE
${ }^{\prime}$ Overvoltage at $\mathrm{A}, \mathrm{EN}, \mathrm{S}$ or D will be clamped by diodes. Current should be limited to the Maximum Rating above.

TRUTH TABLES

A2	A1	A0	EN	ONSWITCH
\mathbf{X}	X	X	0	NONE
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

ADG508A

$\mathbf{A} \mathbf{1}$	A0	EN	ON SWITCH PAIR
X	X	0	NONE
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

$\mathrm{X}=$ Don't Care
ADG509A
*COMMENT: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
CAUTION
ESD (electrostatic discharge) sensitive device. The digital control inputs are Zener protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

PIN CONFIGURATIONS
DIP, SOIC

LCCC

Typical Performance Characteristics-ADG508A/ADG509A

The multiplexers are guaranteed functional with reduced single or dual supplies down to 4.5 V .

$R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$: Dual Supply Voltage, $T_{A}=+25^{\circ} \mathrm{C}$

Leakage Current as a Function of Temperature
(Note: Leakage Currents Reduce as the Supply Voltages Reduce)

$t_{\text {TRANSITION }}$ vs. Supply Voltage: Dual and Single Supplies
$T_{A}=+25^{\circ} \mathrm{C}$
(Note: For $V_{D D}$ and $\left|V_{S S}\right|<10 \mathrm{~V} ; V 1=V_{D D} / V_{S S}$,
$V 2=V_{S S} / V_{D D}$. See Test Circuit 6)

REV. B

$R_{O N}$ as a Function of $V_{D}\left(V_{S}\right)$: Single Supply Voltage, $T_{A}=+25^{\circ} \mathrm{C}$

Trigger Levels vs. Power Supply Voltage, Dual or Single Supply, $T_{A}=+25^{\circ} \mathrm{C}$

$I_{D D}$ vs. Supply Voltage: Dual or Single Supply, $T_{A}=+25^{\circ} \mathrm{C}$

ADG508A/ADG509A - Test Circuits

Note: All Digital Input Signal Rise and Fall Times Measured from 10% to 90% of 3 V . $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=20 \mathrm{~ns}$.

SWITCHING TIME OF MULTIPLEXER, $\boldsymbol{t}_{\text {TRANSITION }}$

TEST CIRCUIT 7

TEST CIRCUIT 8

TEST CIRCUIT 9

SINGLE SUPPLY OCTAL DAC APPLICATION

The following circuit shows the ADG508A connected as a demultiplexer to provide eight separate digitally programmable voltages (0 to +10 V) from the AD7245. The AD7245 is a complete 12-bit, voltage output DAC with output amplifier and Zener
voltage reference on a monolithic CMOS chip. The entire system operates from a single +15 V power supply. The ADG508A is ideally suited for the application because it has both low charge injection and $\mathrm{I}_{\mathrm{S}}(\mathrm{OFF})$ leakage current

REV. B

ADG508A/ADG509A

MECHANICAL INFORMATION
 OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).
16-Pin Plastic (N-16)
16-Pin Cerdip (Q-16)

20-Terminal Plastic Leaded Chip Carrier
(P-20A)

PRINTED IN U.S.A.

REV. B

