
 FEATURES
 +1.8 V to +5.5 V Single Supply
 4Ω (Max) On Resistance
 Low On-Resistance Flatness
 -3 dB Bandwidth $\mathbf{> 2 0 0} \mathbf{~ M H z}$
 Rail-to-Rail Operation
 8 -Lead μ SOIC Package
 Fast Switching Times
 ton 20 ns
 $t_{\text {OfF }} 10 \mathrm{~ns}$
 Low Power Consumption (<0.1 $\mu \mathrm{W}$)
 TTL/CMOS Compatible

APPLICATIONS

Battery Powered Systems
Communication Systems
Sample Hold Systems
Audio Signal Routing
Video Switching
Mechanical Reed Relay Replacement

GENERAL DESCRIPTION

The ADG721, ADG722 and ADG723 are monolithic CMOS SPST' switches. These switches are designed on an advanced submicron process that provides low power dissipation yet gives high switching speed, low On resistance and low leakage currents. The ADG721, ADG722 and ADG723 are designed to operate from a single +1.8 V to +5.5 V supply, making them ideal for use in battery powered instruments and with the new generation of DACs and ADCs from Analog Devices.
The ADG721, ADG722 and ADG723 contain two independent single-pole/single-throw (SPST) switches. The ADG721 and ADG722 differ only in that both switches are normally open and normally closed respectively. While in the ADG723, Switch 1 is normally open and Switch 2 is normally closed.
Each switch of the ADG721, ADG722 and ADG723 conducts equally well in both directions when on. The ADG723 exhibits break-before-make switching action.

ADG721/ADG722/ADG723

FUNCTIONAL BLOCK DIAGRAMS

sWitches shown for a logic "o" input

PRODUCT HIGHLIGHTS

1. +1.8 V to +5.5 V Single Supply Operation. The ADG721, ADG722 and ADG723 offers high performance, including low on resistance and fast switching times and is fully specificd and guaranteed with +3 V and +5 V supply rails.
2. Very Low $\mathrm{R}_{\mathrm{ON}}(4 \Omega \max$ at $5 \mathrm{~V}, 10 \Omega \max$ at 3 V). At 1.8 V operation, R_{ON} is typically 40Ω over the temperature range.
3. Low On-Resistance Flatness.
4. -3 dB Bandwidth $>200 \mathrm{MHz}$.
5. Low Power Dissipation. CMOS construction ensures low power dissipation.
6. Fast $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$
7. 8-Lead $\mu \mathrm{SOIC}$.

REV. 0
Information furnished by Analog Devices is believed to be accurate and eliable. Howeve, no responsibily is assumed by Analog Devices for it use, nor for any infringements of patents or other rights of third parties otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Tel: 781/329-4700
Fax: 781/326-8703

ADG721/ADG722/ADG723-SPECIFICATIONS ${ }^{1}$
 $\left(V_{D D}=+5 \mathrm{~V} \pm 10 \%\right.$, $\mathrm{GND}=0 \mathrm{~V}$. All specifications $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { sion } \\ & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	Units	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (R_{ON}) On Resistance Match Between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On-Resistance Flatness ($\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$)	4 $\begin{aligned} & 0.3 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 5 \\ & \\ & 1.0 \\ & 1.5 \end{aligned}$	V Ω max Ω typ Ω max Ω typ $\Omega \max$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA},$ Test Circuit 1 $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{S}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{S}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage Is (OFF) Drain OFF Leakage \mathbf{I}_{D} (OFF) Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	$\begin{aligned} & \pm 0.35 \\ & \pm 0.35 \\ & \pm 0.35 \end{aligned}$	nA typ $n A \max$ nA typ $n A \max$ nA typ $n A \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text {, or } \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=4.5 \mathrm{~V}$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $V_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	0.005	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ Break-Before-Make Time Delay, t_{D} (ADG723 Only) Charge Injection Off Isolation Channel-to-Channel Crosstalk Bandwidth -3 dB C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	14 6 7 2 -60 -80 -77 -97 200 7 7 18	20 10	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ dB typ dB typ MHz typ pF typ pF typ pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$, $\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=3 \mathrm{~V}$, Test Circuit 5 $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V} ; \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$, Test Circuit 6 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Test Circuit 9
POWER REQUIREMENTS I_{DD}	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$

NOTES
Temperature ranges are as follows: B Version,$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

SPECIFICATIONS ${ }_{\left(V_{00}=+3 v \pm 10 \%, ~ G N D=0\right.} v$. All specifications $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. $)$

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { ion } \\ & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	Units	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance ($\mathrm{RON}_{\mathrm{ON}}$) On Resistance Match Between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On-Resistance Flatness ($\mathrm{R}_{\text {FLAT(ON) }}$)	6.5 0.3	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 10 \\ & 1.0 \\ & 3.5 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$ Test Circuit 1 $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage $\mathrm{I}_{\mathrm{D}}(\mathrm{OFF})$ Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	$\begin{aligned} & \pm 0.35 \\ & \pm 0.35 \\ & \pm 0.35 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text {, or } 3 \mathrm{~V}$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $V_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	0.005	$\begin{aligned} & 2.0 \\ & 0.4 \\ & \\ & \pm 0.1 \end{aligned}$	V min $V \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ Break-Before-Make Time Delay, t_{p} (ADG723 Only) Charge Injection Off Isolation Channel-to-Channel Crosstalk Bandwidth -3 dB C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 16 \\ & 7 \\ & 7 \\ & 2 \\ & -60 \\ & -60 \\ & -80 \\ & -77 \\ & -97 \\ & 200 \\ & 7 \\ & 7 \\ & 7 \\ & 18 \end{aligned}$	24 11	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ dB typ dB typ MHz typ pF typ pF typ pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$, $\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=2 \mathrm{~V}$, Test Circuit 5 $\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$, Test Circuit 6 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pH}$ Test Circuit 9
POWER REQUIREMENTS I_{DD}	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 3 \mathrm{~V} \end{aligned}$

NOTES

Temperature ranges are as follows: B Version, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

ADG721/ADG722/ADG723

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)	
V $\mathrm{DD}^{\text {to }}$ GND . 0.3 V to +7 V	
Analog, Digital Inputs ${ }^{2} \ldots \ldots . \ldots-0.3 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }}+0.3 \mathrm{~V}$ or	
Continuous Current, S or D 30 mA	
Operating Temperature Range	
Industrial (B Version)	$85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Junction Temperature . $+150^{\circ} \mathrm{C}$	
μ SOIC Package, Power Dissipation 450 mW	
θ_{JA} Thermal Impedance $206^{\circ} \mathrm{C} / \mathrm{W}$	
θ_{JC} 'Thermal Impedance . $44^{\circ} \mathrm{C} / \mathrm{W}$	
Lead Temperature, Soldering	
Vapor Phase (60 sec) . $+215^{\circ} \mathrm{C}$	
Infrared (15 sec) . $+220^{\circ} \mathrm{C}$	
ESD . 2 kV	
NOTES	
Stresses above those listed under Absolute Maximum Ratings may cause perma nent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.	
${ }^{2}$ Overvoltages at IN, S or D will be cla limited to the maximum ratings give	ped by internal diodes. Current should be

Table I. Truth Table (ADG721/ADG722)

ADG721 In	ADG722 In	Switch Condition
0	1	OFF
1	0	ON

Table II. Truth Table (ADG723)

Logic	Switch 1	Switch 2
0	OFF	ON
1	ON	OFF

TERMINOLOGY

V_{DD}	Most Positive Power Supply Potential.
GND	Ground (0 V) Reference.
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
IN	Logic Control Input.
R_{ON}	Ohmic resistance between D and S.
$\Delta \mathrm{R}_{\mathrm{ON}}$	On resistance match between any two channels i.e., $\mathrm{R}_{\mathrm{ON}} \max -\mathrm{R}_{\mathrm{ON}} \min$.
$\mathrm{R}_{\text {FLAT(ON) }}$	Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.
$\mathrm{I}_{\text {S }}$ (OFF)	Source leakage current with the switch "OFF."
I_{D} (OFF)	Drain leakage current with the switch "OFF."
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	Channel leakage current with the switch "ON."
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog voltage on terminals D, S.
C_{S} (OFF)	"OFF" Switch Source Capacitance.
C_{D} (OFF)	"OFF" Switch Drain Capacitance.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{S}(\mathrm{ON})$	"ON" Switch Capacitance.
t_{ON}	Delay between applying the digital control input and the output switching on.
$\mathrm{t}_{\text {OFF }}$	Delay between applying the digital control input and the output switching off.
t_{D}	"OFF" time or "ON" time measured between the 90% points of both switches, When switching from one address state to another. (ADG723 Only)
Crosstalk	A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Charge Injection	A measure of the glitch impulse transferred during switching.

PIN CONFIGURATION
8-Lead μ SOIC (RM-8)

ORDERING GUIDE

Model	Temperature Range	Brand *	Package Description	Package Option
ADG721BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	S 6 B	$\mu \mathrm{SOIC}$	$\mathrm{RM}-8$
ADG722BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	S7B	$\mu \mathrm{SOIC}$	$\mathrm{RM}-8$
ADG723BRM	$40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	S8B	$\mu \mathrm{SOIC}$	$\mathrm{RM}-8$

*Brand = Due to package size limitations, these three characters represent the part number,

CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection Although the ADG721/ADG722/ADG723 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Figure 1. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ Single Supplies

Figure 4. Supply Current vs. Input Switching Frequency

Figure 5. Off Isolation vs. Frequency

Figure 6. Crosstalk vs. Frequency

REV. 0

ADG721/ADG722/ADG723

Figure 7. On Response vs. Frequency

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 5. Break-Before-Make Time Delay, t_{D} (ADG723 Only)
ADG721/ADG722/ADG723

Test Circuit 6. Charge Injection

Test Circuit 7. Off Isolation

REV. 0
$-7-$

ADG721/ADG722/ADG723

APPLICATIONS INFORMATION

The ADG721/ADG722/ADG723 belongs to Analog Devices new family of CMOS switches. This series of general purpose switches have improved switching times, lower on resistance, higher bandwidths, low power consumption and low leakage currents.

ADG721/ADG722/ADG723 Supply Voltage

Functionality of the ADG721/ADG722/ADG723 extends from +1.8 V to +5.5 V single supply, which makes it ideal for battery powered instruments, where important design parameters are power efficiency and performance.
It is important to note that the supply voltage effects the inpu signal range, the on resistance and the switching times of the part. By taking a look at the typical performance characteristics and the specifications, the effects of the power supplies can be clearly seen
For $\mathrm{V}_{\mathrm{DD}}=+1.8 \mathrm{~V}$, on resistance is typically 40Ω over the temperature range.

On Response vs. Frequency
Figure 8 illustrates the parasitic components that affect the ac performance of CMOS switches (the switch is shown surrounded by a box). Additional external capacitances will further degrade some performance. These capacitances affect feedthrough, crosstalk and system bandwidth

Figure 8. Switch Represented by Equivalent Parasitic Components

The transfer function that describes the equivalent diagram of the switch (Figure 8) is of the form (A)s shown below

$$
A(s)=R_{T}\left[\frac{s\left(R_{O N} C_{D S}\right)+1}{s\left(R_{O N} C_{T} R_{T}\right)+1}\right]
$$

where:

$$
\begin{aligned}
& C_{T}=C_{L O A D}+C_{D}+C_{D S} \\
& R_{T}=R_{L O A D} /\left(R_{L O A D}+R_{O N}\right)
\end{aligned}
$$

The signal transfer characteristic is dependent on the switch channel capacitance, C_{DS}. This capacitance creates a frequency zero in the numerator of the transfer function $\mathrm{A}(\mathrm{s})$. Because the switch on resistance is small, this zero usually occurs at high frequencies. The bandwidth is a function of the switch output capacitance combined with $C_{D S}$ and the load capacitance. The frequency pole corresponding to these capacitances appears in the denominator of $\mathrm{A}(\mathrm{s})$.
The dominant effect of the output capacitance, C_{D}, causes the pole breakpoint frequency to occur first. Therefore, in order to maximize bandwidth a switch must have a low input and output capacitance and low on resistance. The On Response vs. Frequency plot for the ADG721/ADG722/ADG723 can be seen in Figure 7.

Off Isolation
Off isolation is a measure of the input signal coupled through an off switch to the switch output. The capacitance, C_{DS}, couples the input signal to the output load, when the switch is off as shown in Figure 9.

Figure 9. Off Isolation Is Affected by External Load Resistance and Capacitance

The larger the value of C_{DS}, larger values of feedthrough will be produced. The typical performance characteristic graph of Figure 5 illustrates the drop in off isolation as a function of frequency. From de to roughly 1 MHz , the switch shows better than -80 dB isolation. Up to frequencies of 10 MHz , the off isolation remains better than -60 dB . As the frequency increases, more and more of the input signal is coupled through to the output. Off isolation can be maximized by choosing a switch with the smallest $C_{D S}$ as possible. The values of load resistance and capacitance also affect off isolation, as they contribute to the coefficients of the poles and zeros in the transfer function of the switch when open.

$$
A(s)=\left[\frac{s\left(R_{L O A D} C_{D S}\right)}{s\left(R_{L O A D}\right)\left(C_{L O A D}+C_{D}+C_{D S}\right)+1}\right]
$$

OUTLINE DIMENSIONS Dimensions shown in inches and (mm).

8-Lead $\boldsymbol{\mu}$ SOIC (RM-8)

