

CMOS, 2.5 Ω Low Voltage, Triple/Quad SPDT Switches

ADG733/ADG734

FEATURES

1.8 V to 5.5 V Single Supply ±3 V Dual Supply
2.5 Ω On Resistance
0.5 Ω On Resistance Flatness
100 pA Leakage Currents
19 ns Switching Times
Triple SPDT: ADG733
Quad SPDT: ADG734
Small TSSOP and QSOP Packages
Low Power Consumption
TTL/CMOS-Compatible Inputs

APPLICATIONS

Data Acquisition Systems Communication Systems Relay Replacement Audio and Video Switching Battery-Powered Systems

FUNCTIONAL BLOCK DIAGRAMS

GENERAL DESCRIPTION

The ADG733 and ADG734 are low voltage, CMOS devices comprising three independently selectable SPDT (single pole, double throw) switches and four independently selectable SPDT switches respectively.

Low power consumption and operating supply range of 1.8 V to 5.5 V and dual ± 3 V make the ADG733 and ADG734 ideal for battery powered, portable instruments. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels. An $\overline{\text{EN}}$ input on the ADG733 is used to enable or disable the device. When disabled, all channels are switched OFF.

These 2–1 multiplexers/SPDT switches are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on resistance, high signal bandwidths and low leakage currents. On resistance is in the region of a few ohms, is closely matched between switches and very flat over the full signal range. These parts can operate equally well in either direction and have an input signal range which extends to the supplies.

The ADG733 is available in small TSSOP and QSOP packages, while the ADG734 is available in a small TSSOP package.

PRODUCT HIGHLIGHTS

- 1. Single/Dual Supply Operation. The ADG733 and ADG734 are fully specified and guaranteed with 3 V and 5 V single supply rails and ±3 V dual supply rails.
- 2. Low On Resistance (2.5 Ω typical).
- 3. Low Power Consumption (<0.01 μ W).
- 4. Guaranteed Break-Before-Make Switching Action.

REV.0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2001

$\label{eq:additional} \underline{ADG733} \\ \underline{ADG733} \\ \underline{ADG734} \\ \underline{SPECIFICATIONS^1} (v_{DD} = 5 \ V \pm 10\%, \ V_{SS} = 0 \ V, \ \text{GND} = 0 \ V, \ \text{unless otherwise noted.})$

	BV	ersion		
		-40°C		
Parameter	25°C	to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to V_{DD}	V	
On Resistance (R _{ON})	2.5		Ω typ	$V_{S} = 0 V$ to V_{DD} , $I_{DS} = 10 mA$;
	4.5	5.0	Ω max	Test Circuit 1
On-Resistance Match between		0.1	Ω typ	$V_{S} = 0 V$ to V_{DD} , $I_{DS} = 10 mA$
Channels (ΔR_{ON})		0.4	Ω max	
On-Resistance Flatness (R _{FLAT(ON)})	0.5		Ω typ	$V_{\rm S} = 0$ V to $V_{\rm DD}$, $I_{\rm DS} = 10$ mA
		1.2	Ω max	
LEAKAGE CURRENTS				V _{DD} = 5.5 V
Source OFF Leakage I_S (OFF)	±0.01		nA typ	$V_{\rm D} = 4.5 \text{ V/1 V}, V_{\rm S} = 1 \text{ V/4.5 V};$
000100 011 20010ge 13 (011)	± 0.1	± 0.3	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	± 0.01	2010	nA typ	$V_{\rm D} = V_{\rm S} = 1$ V, or 4.5 V;
g	± 0.1	± 0.5	nA max	Test Circuit 3
DIGITAL INPUTS Input High Voltage, V _{INH}		2.4	V min	
			V max	
Input Low Voltage, V _{INL} Input Current		0.8	v max	
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
I _{INL} OI I _{INH}	0.005	± 0.1	μA typ μA max	$v_{\rm IN} - v_{\rm INL} \text{ or } v_{\rm INH}$
C _{IN} , Digital Input Capacitance	4	± 0.1	pF typ	
			prtyp	
DYNAMIC CHARACTERISTICS ²	10			
t _{ON}	19	24	ns typ	$R_{\rm L} = 300 \ \Omega, C_{\rm L} = 35 \ \rm pF;$
	-	34	ns max	$V_s = 3 V$, Test Circuit 4
t _{OFF}	7	10	ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
$\Delta DC722 + \overline{(EN)}$	20	12	ns max	$V_s = 3 V$, Test Circuit 4
ADG733 $t_{ON}(\overline{EN})$	20	40	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
	7	40	ns max	$V_s = 3 V$, Test Circuit 5
$t_{OFF}(\overline{EN})$	7	12	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_S = 3 V$, Test Circuit 5
Break-Before-Make Time Delay, t _D	13	12	ns max	$V_S = 300 \Omega$, $C_L = 35 \text{ pF}$;
break-belore-make Time Delay, i _D	15	1	ns typ ns min	$V_{s} = 3 V$, Test Circuit 6
Charge Injection	±3	1	pC typ	$V_s = 3 V$, rest circuit o $V_s = 2 V$, $R_s = 0 \Omega$, $C_L = 1 nF$;
Charge injection	± 5		pC typ	Test Circuit 7
Off Isolation	-62		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$;
On Isolation	-82		dB typ	$R_L = 50 \Omega_2, G_L = 5 pF, f = 1 MHz;$ $R_L = 50 \Omega, G_L = 5 pF, f = 1 MHz;$
	02		ub typ	Test Circuit 8
Channel-to-Channel Crosstalk	-62		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz;$
	-82		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
			J P	Test Circuit 9
-3 dB Bandwidth	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 8
$C_{\rm S}$ (OFF)	11		pF typ	
$C_{\rm D}, C_{\rm S}$ (ON)	34		pF typ	
POWER REQUIREMENTS			- ••	$V_{\rm DD} = 5.5 \rm V$
I DWER REQUIREMENTS	0.001		μA typ	$V_{DD} = 5.5 V$ Digital Inputs = 0 V or 5.5 V
* ∪∪	0.001	1.0	μA typ μA max	
		1.0	μιτιμαχ	

NOTES ¹Temperature range is as follows: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

$\label{eq:specifications} SPECIFICATIONS^1 \ (v_{\text{DD}} = 3 \ \text{V} \pm 10\%, \ v_{\text{ss}} = 0 \ \text{V}, \ \text{GND} = 0 \ \text{V}, \ \text{unless otherwise noted.})$

	B Version -40°C				
Parameter	25°C	to +85°C	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		0 V to V_{DD}	V		
On Resistance (R _{ON})	6		Ω typ	$V_{\rm S}$ = 0 V to $V_{\rm DD}$, $I_{\rm DS}$ = 10 mA;	
	11	12	Ω max	Test Circuit 1	
On-Resistance Match between		0.1	Ω typ	$V_{\rm S} = 0$ V to $V_{\rm DD}$, $I_{\rm DS} = 10$ mA	
Channels (ΔR_{ON})		0.4	Ω max		
On-Resistance Flatness (R _{FLAT(ON)})		3	Ω typ	$V_{\rm S} = 0$ V to $V_{\rm DD}$, $I_{\rm DS} = 10$ mA	
LEAKAGE CURRENTS				$V_{\rm DD} = 3.3 {\rm V}$	
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_{\rm S} = 3 \text{ V/1 V}, V_{\rm D} = 1 \text{ V/3 V};$	
000100 011 20010g0 13 (011)	± 0.1	±0.3	nA max	Test Circuit 2	
Channel ON Leakage I _D , I _S (ON)	± 0.01		nA typ	$V_{\rm S} = V_{\rm D} = 1$ V or 3 V;	
	± 0.01 ± 0.1	± 0.5	nA max	Test Circuit 3	
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.0	V min		
Input Low Voltage, V _{INL}		0.4	V max		
Input Current		0.4	v max		
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
INL OF INH	0.005	± 0.1	μA typ μA max	VIN - VINL OI VINH	
C _{IN} , Digital Input Capacitance	4	±0.1	pF typ		
			prop		
DYNAMIC CHARACTERISTICS ²	20			P = 200, 0, 0, -25, F	
t _{ON}	28		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
		55	ns max	$V_s = 2 V$, Test Circuit 4	
t _{OFF}	9	16	ns typ	$R_L = 300 \Omega, C_L = 35 pF;$	
$AD(722 + (\overline{EN}))$	20	16	ns max	$V_s = 2 V$, Test Circuit 4	
ADG733 $t_{ON}(\overline{EN})$	29	60	ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF;$	
		60	ns max	$V_s = 2 V$, Test Circuit 5	
$t_{OFF}(\overline{EN})$	9	16	ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF;$	
Proof Roford Make Time Dolay +	22	16	ns max	$V_s = 2 V$, Test Circuit 5 $P_s = 300 Q$, $C_s = 35 pE$	
Break-Before-Make Time Delay, t_D	22	1	ns typ	$R_L = 300 \Omega, C_L = 35 pF;$ $V_r = 2 V. Test Circuit 6$	
Charge Injection	±3	1	ns min	$V_s = 2 V$, Test Circuit 6 $V_s = 1 V P = 0 O C = 1 pE$	
Charge Injection	<u>ر ـ</u>		pC typ	$V_S = 1 V, R_S = 0 \Omega, C_L = 1 nF;$ Test Circuit 7	
Off Isolation	-62		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$;	
	-82		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;	
				Test Circuit 8	
Channel-to-Channel Crosstalk	-62		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz;$	
	-82		dB typ	$R_{L} = 50 \Omega, C_{L} = 5 pF, f = 1 MHz;$	
				Test Circuit 9	
–3 dB Bandwidth	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 8	
C _s (OFF)	11		pF typ		
$C_{\rm D}, C_{\rm S}$ (ON)	34		pF typ		
POWER REQUIREMENTS				$V_{DD} = 3.3 \text{ V}$	
I _{DD}	0.001		μA typ	Digital Inputs = $0 \text{ V or } 3.3 \text{ V}$	
-עע		1.0	μA max		
		1.0	µ I IIIan		

NOTES ¹Temperature ranges are as follows: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ADG733/ADG734-SPECIFICATIONS¹

DUAL SUPPLY ($V_{DD} = +3 V \pm 10\%$, $V_{SS} = -3 V \pm 10\%$, GND = 0 V, unless otherwise noted.)

	BV	ersion		
Davana atau	2500	-40°C	T Inda	Test Can ditional Commonts
Parameter	25°C	to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V_{SS} to V_{DD}	V	
On Resistance (R _{ON})	2.5		Ω typ	$V_{\rm S} = V_{\rm SS}$ to $V_{\rm DD}$, $I_{\rm DS} = 10$ mA;
	4.5	5.0	Ω max	Test Circuit 1
On-Resistance Match between		0.1	Ω typ	$V_{\rm S} = V_{\rm SS}$ to $V_{\rm DD}$, $I_{\rm DS} = 10$ mA
Channels (ΔR_{ON})	0.5	0.4	Ω max	$\mathbf{X} = \mathbf{X} + \mathbf{X} = 10$
On-Resistance Flatness (R _{FLAT(ON)})	0.5	1.2	Ω typ Ω max	$V_{S} = V_{SS}$ to V_{DD} , $I_{DS} = 10$ mA
LEAKAGE CURRENTS				V_{DD} = +3.3 V, V_{SS} = -3.3 V
Source OFF Leakage I_S (OFF)	±0.01		nA typ	$V_{\rm S} = +2.25 \text{ V/}-1.25 \text{ V}, V_{\rm D} = -1.25 \text{ V/}+2.25 \text{ V}$
	±0.1	±0.3	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	± 0.01		nA typ	$V_{\rm S} = V_{\rm D} = +2.25 \text{ V/}-1.25 \text{ V}$, Test Circuit 3
	±0.1	±0.5	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.4	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		± 0.1	μA max	
C _{IN} , Digital Input Capacitance	4		pF typ	
DYNAMIC CHARACTERISTICS ²				
t _{ON}	21		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		35	ns max	$V_s = 1.5 V$, Test Circuit 4
t _{OFF}	10		ns typ	$R_{\rm L} = 300 \Omega, C_{\rm L} = 35 \mathrm{pF};$
		16	ns max	$V_{s} = 1.5 V$, Test Circuit 4
ADG733 $t_{ON}(\overline{EN})$	21		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		40	ns max	$V_{\rm S}$ = 1.5 V, Test Circuit 5
$t_{OFF}(\overline{EN})$	10		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		16	ns max	$V_{\rm S}$ = 1.5 V, Test Circuit 5
Break-Before-Make Time Delay, t_D	13		ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
		1	ns min	$V_{\rm S}$ = 1.5 V, Test Circuit 6
Charge Injection	±5		pC typ	$V_{\rm S} = 0 \text{ V}, $
			15	Test Circuit 7
Off Isolation	-62		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz;$
	-82		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Test Circuit 8
Channel-to-Channel Crosstalk	-62		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz;$
	-82		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
	-		uz typ	Test Circuit 9
-3 dB Bandwidth	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 8
$C_{\rm S}$ (OFF)	11		pF typ	
$C_{\rm D}, C_{\rm S}$ (ON)	34		pF typ	
POWER REQUIREMENTS				$V_{DD} = 3.3 \text{ V}$
I _{DD}	0.001		μA typ	Digital Inputs = 0 V or 3.3 V
		1.0	μA max	
I _{SS}	0.001		μA typ	$V_{SS} = -3.3 V$
		1.0	μA max	Digital Inputs = 0 V or 3.3 V

NOTES

 $^{1}Temperature$ range is as follows: B Version: –40 $^{\circ}C$ to +85 $^{\circ}C.$

²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹

(1 _A - 2) o uness otherwise noted)
V_{DD} to V_{SS}
V_{DD} to GND $\ldots \ldots \ldots$
V_{SS} to GND+0.3 V to -3.5 V
Analog Inputs ² $V_{SS} - 0.3$ V to $V_{DD} + 0.3$ V or
30 mA, Whichever Occurs First
Digital Inputs ² -0.3 V to V _{DD} + 0.3 V or
30 mA, Whichever Occurs First
Peak Current, S or D100 mA
(Pulsed at 1 ms, 10% Duty Cycle max)
Continuous Current, S or D 30 mA
Operating Temperature Range
Industrial (A, B Versions) $\dots \dots -40^{\circ}$ C to +85°C
Storage Temperature Range

Junction Temperature
16-Lead TSSOP, θ_{IA} Thermal Impedance 150.4°C/W
20-Lead TSSOP, θ_{IA} Thermal Impedance 143°C/W
16-Lead QSOP, θ _{IA} Thermal Impedance 149.97°C/W
Lead Temperature, Soldering (10 sec)
IR Reflow, Peak Temperature
-

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION -

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG733/ADG734 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG733BRU	-40°C to +85°C	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG733BRQ	-40°C to +85°C	Quarter Size Outline Package (QSOP)	RQ-16
ADG734BRU	-40°C to +85°C	Thin Shrink Small Outline Package (TSSOP)	RU-20

PIN CONFIGURATIONS

TSSOP/QSOP

TSSOP

20 IN4

19 S4A

18 D4

17 S4B

16 V_{DD}

15 NC

14 S3B

ADG734

TOP VIEW

(Not to Scale)

A2	A1	A0	EN	ON Switch
X	X	X	1	None
0	0	0	0	D1-S1A, D2-S2A, D3-S3A
0	0	1	0	D1-S1B, D2-S2A, D3-S3A
0	1	0	0	D1-S1A, D2-S2B, D3-S3A
0	1	1	0	D1-S1B, D2-S2B, D3-S3A
1	0	0	0	D1-S1A, D2-S2A, D3-S3B
1	0	1	0	D1-S1B, D2-S2A, D3-S3B
1	1	0	0	D1-S1A, D2-S2B, D3-S3B
1	1	1	0	D1-S1B, D2-S2B, D3-S3B

Table I. ADG733 Truth Table

X = Don't Care.

TERMINOLOGY

V _{DD}	Most Positive Power Supply Potential.	C _{IN}	Digital Input Capacitance.
V _{SS}	Most Negative Power Supply in a Dual Supply Application. In single supply applications, this should be tied to ground close to the device.	t _{ON}	Delay time measured between the 50% and 90% points of the digital inputs and the switch "ON" condition.
I_{DD}	Positive Supply Current.	t _{OFF}	Delay time measured between the 50% and
I _{SS}	Negative Supply Current.		90% points of the digital input and the switch "OFF" condition.
GND	Ground (0 V) Reference.	$t_{ON}(\overline{EN})$	Delay time between the 50% and 90% points
S	Source Terminal. May be an input or output.		of the \overline{EN} digital input and the switch "ON"
D	Drain Terminal. May be an input or output.		condition.
IN	Logic Control Input.	$t_{OFF}(\overline{EN})$	Delay time between the 50% and 90% points
$V_D(V_S)$	Analog Voltage on Terminals D, S		of the $\overline{\text{EN}}$ digital input and the switch "OFF" condition.
R _{ON}	Ohmic Resistance between D and S.	t _{OPEN}	"OFF" time measured between the 80% points of both switches when switching from one address state to another.
$\Delta R_{\rm ON}$	On Resistance Match between Any Two Channels, i.e., R _{ON} max – R _{ON} min	LOPEN	
$R_{FLAT\left(ON\right)}$	Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.	Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
I _S (OFF)	Source Leakage Current with the Switch "OFF."	Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
$I_D, I_S (ON)$	Channel Leakage Current with the Switch "ON."	Crosstalk	A measure of unwanted signal that is coupled through from one channel to
V _{INL}	Maximum Input Voltage for Logic "0."		another as a result of parasitic capacitance.
V _{INH}	Minimum Input Voltage for Logic "1."	Bandwidth	The frequency at which the output is
$I_{\rm INL}(I_{\rm INH})$	Input Current of the Digital Input.	0.5	attenuated by 3 dBs.
C _S (OFF)	"OFF" Switch Source Capacitance.	On Response	The Frequency Response of the "ON" Switch.
	Measured with reference to ground.	Insertion Loss	The loss due to the ON resistance of the switch.
$C_D, C_S(ON)$	"ON" Switch Capacitance. Measured with reference to ground.		

Table II. ADG734 Truth Table

Logic	Switch A	Switch B
0	OFF	ON
1	ON	OFF

Typical Performance Characteristics-ADG733/ADG734

TPC 1. On Resistance as a Function of V_D (V_S) for Single Supply

 V_{D} , or V_{S} /drain or source voltage – v

TPC 2. On Resistance as a Function of V_D (V_S) for Dual Supply

TPC 3. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

TPC 4. On Resistance as a Function of V_D (V_S) for Different Temperatures, Single Supply

TPC 5. On Resistance as a Function of V_D (V_S) for Different Temperatures, Dual Supply

TPC 6. Leakage Currents as a Function of V_D (V_S)

TPC 7. Leakage Currents as a Function of V_D (V_S)

TPC 8. Leakage Currents as a Function of V_D (V_S)

TPC 9. Leakage Currents as a Function of Temperature

TPC 10. Leakage Currents as a Function of Temperature

TPC 11. t_{ON}/t_{OFF} Times vs. Temperature

TPC 12. On Response vs. Frequency

TPC 13. Input Current, I_{DD} vs. Switching Frequency

TPC 14. Off Isolation vs. Frequency

TPC 15. Crosstalk vs. Frequency

TPC 16. Charge Injection vs. Source Voltage

Test Circuits

Test Circuit 5. Enable Delay, t_{ON} (\overline{EN}), t_{OFF} (\overline{EN})

Test Circuit 6. Break-Before-Make Delay, t_{OPEN}

Test Circuit 7. Charge Injection

Test Circuit 8. OFF Isolation and Bandwidth

Test Circuit 9. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

16-Lead QSOP (RQ-16)

