CMOS, 2.5Ω Low Voltage, Triple/Quad SPDT Switches

FEATURES

1.8 V to 5.5 V Single Supply
± 3 V Dual Supply
2.5 Ω On Resistance
0.5Ω On Resistance Flatness
100 pA Leakage Currents
19 ns Switching Times
Triple SPDT: ADG733
Quad SPDT: ADG734
Small TSSOP and QSOP Packages
Low Power Consumption
TTL/CMOS-Compatible Inputs

APPLICATIONS

Data Acquisition Systems
Communication Systems
Relay Replacement
Audio and Video Switching
Battery-Powered Systems

GENERAL DESCRIPTION

The ADG733 and ADG734 are low voltage, CMOS devices comprising three independently selectable SPDT (single pole, double throw) switches and four independently selectable SPDT switches respectively.
Low power consumption and operating supply range of 1.8 V to 5.5 V and dual $\pm 3 \mathrm{~V}$ make the ADG733 and ADG734 ideal for battery powered, portable instruments. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels. An EN input on the ADG733 is used to enable or disable the device. When disabled, all channels are switched OFF.
These 2-1 multiplexers/SPDT switches are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on resistance, high signal bandwidths and low leakage currents. On resistance is in the region of a few ohms, is closely matched between switches and very flat over the full signal range. These parts can operate equally well in either direction and have an input signal range which extends to the supplies.
The ADG733 is available in small TSSOP and QSOP packages, while the ADG734 is available in a small TSSOP package.

REV. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A " 1 " INPUT LOGIC

PRODUCT HIGHLIGHTS

1. Single/Dual Supply Operation. The ADG733 and ADG734 are fully specified and guaranteed with 3 V and 5 V single supply rails and $\pm 3 \mathrm{~V}$ dual supply rails.
2. Low On Resistance (2.5Ω typical).
3. Low Power Consumption ($<0.01 \mu \mathrm{~W}$).
4. Guaranteed Break-Before-Make Switching Action.

Parameter	B Version		Unit	Test Conditions/Comments
	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On Resistance (R_{ON}) On-Resistance Match between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On-Resistance Flatness ($\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$)	$\begin{aligned} & 2.5 \\ & 4.5 \\ & \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 5.0 \\ & 0.1 \\ & 0.4 \\ & \\ & 1.2 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} ;$ Test Circuit 1 $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.3 \\ & \pm 0.5 \end{aligned}$	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} \text {, or } 4.5 \mathrm{~V} \text {; }$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ ADG733 $\quad \mathrm{t}_{\mathrm{ON}}(\overline{\mathrm{EN}})$ $\mathrm{t}_{\mathrm{OFF}}(\overline{\mathrm{EN}})$ Break-Before-Make Time Delay, t_{D} Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth C_{S} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	19 7 20 7 13 ± 3 -62 -82 -62 -82 200 11 34	34 12 40 12 1	ns typ ns max ns typ ns min pC typ dB typ dB typ dB typ dB typ MHz typ pF typ pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 5 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 5 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 6 $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$; $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ Test Circuit 9 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Test Circuit 8
POWER REQUIREMENTS I_{DD}	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

Parameter	$25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { ion } \\ & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (R_{ON}) On-Resistance Match between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On-Resistance Flatness ($\mathrm{R}_{\text {FLAT(ON) }}$)	$\begin{aligned} & 6 \\ & 11 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 12 \\ & 0.1 \\ & 0.4 \\ & 3 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} ;$ Test Circuit 1 $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.3 \\ & \pm 0.5 \end{aligned}$	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} ; \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 3 \mathrm{~V} \text {; }$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ C_{IN}, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 4 \end{aligned}$	$\begin{array}{r} 2.0 \\ 0.4 \\ \\ \pm 0.1 \end{array}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\text {OFF }}$ ADG733 $\mathrm{t}_{\mathrm{ON}}(\overline{\mathrm{EN}})$ $\mathrm{t}_{\mathrm{OFF}}(\overline{\mathrm{EN}})$ Break-Before-Make Time Delay, t_{D} Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth C_{S} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 28 \\ & 9 \\ & 29 \\ & 9 \\ & 22 \\ & \\ & \pm 3 \\ & \\ & -62 \\ & -82 \\ & -62 \\ & -82 \\ & 200 \\ & 11 \\ & 34 \end{aligned}$	$\begin{aligned} & 55 \\ & 16 \\ & 60 \\ & 16 \end{aligned}$	ns typ ns max ns typ ns min pC typ dB typ dB typ dB typ dB typ MHz typ pF typ pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, Test Circuit 5 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, Test Circuit 5 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$; $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, Test Circuit 6 $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$; $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$; $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; Test Circuit 9 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Test Circuit 8
POWER REQUIREMENTS I_{DD}	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$

[^0]
ADG733/ADG734-SPECIFICATIONS ${ }^{1}$

DUAL SUPPLY ($\mathrm{V}_{\mathrm{DD}}=+3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=-3 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.)

Parameter	B Version		Unit	Test Conditions/Comments
	$25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On Resistance (R_{ON}) On-Resistance Match between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On-Resistance Flatness ($\mathrm{R}_{\text {FLAT(ON) }}$)	$\begin{aligned} & 2.5 \\ & 4.5 \\ & \\ & 0.5 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 5.0 \\ & 0.1 \\ & 0.4 \\ & \\ & 1.2 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} ; \\ & \text { Test Circuit } 1 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.3 \\ & \pm 0.5 \end{aligned}$	nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+2.25 \mathrm{~V} /-1.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-1.25 \mathrm{~V} /+2.25 \mathrm{~V} ; \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=+2.25 \mathrm{~V} /-1.25 \mathrm{~V} \text {, Test Circuit } 3$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, V ${ }_{\text {INL }}$ Input Current $\mathrm{I}_{\mathrm{INL}}$ or $\mathrm{I}_{\mathrm{INH}}$ C_{IN}, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 4 \end{aligned}$	$\begin{gathered} 2.0 \\ 0.4 \\ \\ \pm 0.1 \end{gathered}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\text {OFF }}$ ADG733 $\quad \mathrm{t}_{\mathrm{ON}}(\overline{\mathrm{EN}})$ $\mathrm{t}_{\mathrm{OFF}}(\overline{\mathrm{EN}})$ Break-Before-Make Time Delay, t_{D} Charge Injection Off Isolation Channel-to-Channel Crosstalk -3 dB Bandwidth C_{S} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & 21 \\ & 10 \\ & 21 \\ & 10 \\ & 13 \\ & \\ & \pm 5 \\ & \\ & -62 \\ & -82 \\ & -62 \\ & -82 \\ & 200 \\ & 11 \\ & 34 \end{aligned}$	35 16 40 16 1	ns typ ns max ns typ ns min pC typ dB typ dB typ dB typ dB typ MHz typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{Test}^{2} \text { Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \text { Test Circuit } 4 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \text { Test Circuit } 5 \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \text { Test Circuit } 5 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \text { Test Circuit } 6 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \end{aligned}$ Test Circuit 7 $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$ Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ Test Circuit 9 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Test Circuit 8
POWER REQUIREMENTS I_{DD} $\mathrm{I}_{\text {SS }}$	0.001 0.001	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ Digital Inputs $=0 \mathrm{~V}$ or 3.3 V $\mathrm{V}_{\mathrm{SS}}=-3.3 \mathrm{~V}$ Digital Inputs $=0 \mathrm{~V}$ or 3.3 V

[^1]
ADG733/ADG734

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)	
V_{DD} to $\mathrm{V}_{\text {SS }}$	V
V_{DD} to GND	-0.3 V to +7 V
$\mathrm{V}_{\text {SS }}$ to GND	+0.3 V to -3.5 V
Analog Inputs ${ }^{2}$	$. \mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , Whichever Occurs First
Digital Inputs ${ }^{2}$	$\ldots-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , Whichever Occurs First
Peak Current, S or D . 100 mA	
(Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max)	
Continuous Current, S or D	30 mA
Operating Temperature Range	
Industrial (A, B Versions)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

[^2]
CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG733/ADG734 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG733BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-16
ADG733BRQ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Quarter Size Outline Package (QSOP)	RQ-16
ADG734BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Shrink Small Outline Package (TSSOP)	RU-20

PIN CONFIGURATIONS

Table I. ADG733 Truth Table

A2	A1	A0	$\overline{\text { EN }}$	ON Switch
X	X	X	1	None
0	0	0	0	D1-S1A, D2-S2A, D3-S3A
0	0	1	0	D1-S1B, D2-S2A, D3-S3A
0	1	0	0	D1-S1A, D2-S2B, D3-S3A
0	1	1	0	D1-S1B, D2-S2B, D3-S3A
1	0	0	0	D1-S1A, D2-S2A, D3-S3B
1	0	1	0	D1-S1B, D2-S2A, D3-S3B
1	1	0	0	D1-S1A, D2-S2B, D3-S3B
1	1	1	0	D1-S1B, D2-S2B, D3-S3B

X = Don't Care.

TERMINOLOGY

V_{DD}	Most Positive Power Supply Potential.
$\mathrm{V}_{\text {S }}$	Most Negative Power Supply in a Dual Supply Application. In single supply applications, this should be tied to ground close to the device.
I_{DD}	Positive Supply Current.
$\mathrm{I}_{\text {SS }}$	Negative Supply Current.
GND	Ground (0 V) Reference.
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
IN	Logic Control Input.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog Voltage on Terminals D, S
R_{ON}	Ohmic Resistance between D and S.
$\Delta \mathrm{R}_{\mathrm{ON}}$	On Resistance Match between Any Two Channels, i.e., $\mathrm{R}_{\mathrm{ON}} \mathrm{max}-\mathrm{R}_{\mathrm{ON}} \min$
$\mathrm{R}_{\text {FLAT(ON) }}$	Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.
$\mathrm{I}_{\text {S }}(\mathrm{OFF})$	Source Leakage Current with the Switch "OFF."
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	Channel Leakage Current with the Switch "ON."
$\mathrm{V}_{\text {INL }}$	Maximum Input Voltage for Logic "0."
$\mathrm{V}_{\text {INH }}$	Minimum Input Voltage for Logic "1."
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$	Input Current of the Digital Input.
$\mathrm{C}_{S}(\mathrm{OFF})$	"OFF" Switch Source Capacitance. Measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	"ON" Switch Capacitance. Measured with reference to ground.

Typical Performance Characteristics-ADG733/ADG734

TPC 1. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

TPC 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

TPC 7. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

TPC 2. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

TPC 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

TPC 8. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

TPC 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

TPC 6. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

TPC 9. Leakage Currents as a Function of Temperature

ADG733/ADG734

TPC 10. Leakage Currents as a Function of Temperature

TPC 13. Input Current, I $I_{D D}$ vs. Switching Frequency

TPC 16. Charge Injection vs. Source Voltage

TPC 11. $t_{\text {ON }} / t_{\text {OFF }}$ Times vs. Temperature

TPC 14. Off Isolation vs. Frequency

TPC 12. On Response vs. Frequency

TPC 15. Crosstalk vs. Frequency

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. IS (OFF)

Test Circuit 3. $I_{D}(O N)$

Test Circuit 4. Switching Times, $t_{\text {ON }}, t_{\text {OFF }}$

Test Circuit 5. Enable Delay, $t_{O N}(\overline{E N}), t_{\text {OFF }}(\overline{E N})$

*A0, A1, A2 FOR ADG733, IN1-4 FOR ADG734
Test Circuit 6. Break-Before-Make Delay, topen

* IN1-4 FOR ADG734

Test Circuit 7. Charge Injection

SWITCH OPEN FOR OFF ISOLATION MEASUREMENTS SWITCH CLOSED FOR BANDWIDTH MEASUREMENTS
OFF ISOLATION $=20$ LOG $_{10}\left(\mathrm{~V}_{\text {OUT }} / \mathrm{V}_{\mathrm{S}}\right)$
INSERTION LOSS $=20$ LOG $_{10}\left(\frac{\mathrm{~V}_{\text {OUT }} \text { WITH SWITCH }}{\mathrm{v}_{\text {OUT }} \text { WITHOUT SWITCH }}\right)$
Test Circuit 8. OFF Isolation and Bandwidth

NC = NO CONNECT

Test Circuit 9. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

[^0]: NOTES
 ${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.
 Specifications subject to change without notice.

[^1]: NOTES
 ${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
 ${ }^{2}$ Guaranteed by design, not subject to production test.
 Specifications subject to change without notice.

[^2]: Junction Temperature . $150^{\circ} \mathrm{C}$
 16 -Lead TSSOP, $\theta_{J A}$ Thermal Impedance $150.4^{\circ} \mathrm{C} / \mathrm{W}$
 20-Lead TSSOP, $\theta_{\text {JA }}$ Thermal Impedance $143^{\circ} \mathrm{C} / \mathrm{W}$
 $16-$ Lead QSOP, $\theta_{J A}$ Thermal Impedance $149.97^{\circ} \mathrm{C} / \mathrm{W}$
 Lead Temperature, Soldering (10 sec) $300^{\circ} \mathrm{C}$
 IR Reflow, Peak Temperature . $220^{\circ} \mathrm{C}$

 ## NOTES

 ${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
 ${ }^{2}$ Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

