CMOS, 3Ω Low Voltage 4-/8-ChannelMultiplexers

Preliminary Technical Data

FEATURES

1.8 V to 5.5 V Single Supply ± 3 V Dual Supply
3Ω On-Resistance
0.75Ω On-Resistance Flatness
100 pA Leakage Currents
14 ns Switching Times
Single 8-to-1 Multiplexer ADG758
Differential 4-to-1 Multiplexer ADG759
20-Lead Chip Scale Package
Low Power Consumption
TTL/CMOS-Compatible Inputs

APPLICATIONS

Data Acquisition Systems
Communication Systems
Relay Replacement
Audio and Video Switching
Battery-Powered Systems

GENERAL DESCRIPTION

The ADG758 and ADG759 are low voltage, CMOS analog multiplexers comprising eight single channels and four differential channels respectively. The ADG758 switches one of eight inputs (S1-S8) to a common output, D, as determined by the 3 -bit binary address lines $A 0, A 1$, and A2. The ADG759 switches one of four differential inputs to a common differential output as determined by the 2-bit binary address lines A0 and A1. An EN input on both devices is used to enable or disable the device. When disabled, all channels are switched OFF.

Low power consumption and operating supply range of 1.8 V to 5.5 V make the ADG 758 and ADG 759 ideal for battery-powered, portable instruments. All channels exhibit break-before-make switching action preventing momentary shorting when switching channels.
These switches are designed on an enhanced submicron process that provides low power dissipation yet gives high switching speed, very low on-resistance and leakage currents. On-resistance is in the region of a few ohms and is closely matched between switches and very flat over the full signal range. These parts can operate equally well as either Multiplexers or Demultiplexers, and have an input signal range that extends to the supplies.

REV. PrB

FUNCTIONAL BLOCK DIAGRAMS

The ADG758 and ADG759 are available in 20-lead Chip Scale packages.

PRODUCT HIGHLIGHTS

1. Single/Dual Supply Operation. The ADG758 and ADG759 are fully specified and guaranteed with 3 V and 5 V single supply and $\pm 3 \mathrm{~V}$ dual supply rails.
2. Low Ron (3 Ω Typical).
3. Low Power Consumption (<0.01 $\mu \mathrm{W}$).
4. Guaranteed Break-Before-M ake Switching Action.
5. Small 20-Lead Chip Scale Package.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
Fax: 781/326-8703
World Wide Web Site: http://www.analog.com

Parameter	B Version		Unit	TestConditions/Comments
		$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On-Resistance (R_{on}) On-Resistance M atch Between Channels ($\Delta \mathrm{R}_{\text {ON }}$) On-Resistance Flatness ($\mathrm{R}_{\mathrm{FLAt}(\mathrm{On})}$)	3 4.5 0.75	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 5 \\ & 0.4 \\ & 0.8 \\ & 1.2 \end{aligned}$	V Ω typ Ω max Ω typ $\Omega \max$ Ω typ Ω max	$V_{S}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} ;$ Test Circuit 1 $\begin{aligned} & V_{S}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \\ & \mathrm{~V}_{S}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA} \end{aligned}$
LeAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage I_{D} (OFF) Channel ON Leakage $I_{D}, I_{S}(O N)$	$\begin{aligned} & \pm 0.01 \\ & \pm 10 \\ & \pm 0.01 \\ & \pm 10 \\ & \pm 0.01 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 20 \\ & \pm 20 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \text {; }$ Test Circuit 3 $\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} \text {, or } 4.5 \mathrm{~V} \text {, Test Circuit } 4$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $l_{\text {INL }}$ or $l_{\text {INH }}$ $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance	0.005 2	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ $\mathrm{t}_{\text {transition }}$ Break-B efore-M ake Time Delay, t_{D} t_{ON} (EN) $\mathrm{t}_{\text {OFF }}(\mathrm{EN})$ Charge Injection Off Isolation Channel-to-C hannel Crosstalk -3 dB Bandwidth C_{s} (OFF) C_{D} (OFF) ADG708 ADG709 $C_{D}, C_{S}(O N)$ ADG708 ADG709	$\begin{aligned} & 14 \\ & 8 \\ & 14 \\ & 7 \\ & \pm 3 \\ & -60 \\ & -80 \\ & -60 \\ & -80 \\ & 55 \\ & 13 \\ & 85 \\ & 42 \\ & 96 \\ & 48 \end{aligned}$	25 1 25 12	ns typ ns max ns typ ns min ns typ ns max ns typ ns max pC typ dB typ dB typ dB typ dB typ M Hz typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \text { Test Circuit } 5 \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 0 \mathrm{~V}, \mathrm{~V}_{\mathrm{S} 8}=0 \mathrm{~V} / 3 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~T} \text { est Circuit } 6 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~T} \text { est Circuit } 7 \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~T} \text { est } \mathrm{C} \text { ircuit } 7 \\ & \mathrm{~V}_{\mathrm{S}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \\ & \mathrm{T} \text { est Circuit } 8 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~T}_{\mathrm{est}} \mathrm{Circuit} 9 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~T} \text { est } \mathrm{Circuit} 10 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~T} \text { est Circuit } 9 \end{aligned}$
POWER REQUIREMENTS $I_{D D}$	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{D D}=5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

NOTES
${ }^{1}$ Temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Speci \cdot cations subject to change without notice.

SPECIFICATIONS ${ }^{1}$

Parameter	B Version		Unit	Test Conditions/Comments
		$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+855^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On-Resistance (Ron) On-Resistance Match Between Channels ($\mathrm{DR}_{\mathrm{on}}$)	$\begin{array}{\|l} 8 \\ 11 \end{array}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{D D} \\ & 12 \\ & 0.4 \\ & 1.2 \end{aligned}$	$\begin{aligned} & V \\ & \Omega \text { typ } \\ & \Omega \max \\ & \Omega \operatorname{typ} \\ & \Omega \max \end{aligned}$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$; Test Circuit 1 $V_{S}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{DS}}=10 \mathrm{~mA}$
LEAKAGE CURRENTS Source OFF Leakage I_{S} (OFF) Drain OFF Leakage I_{D} (OFF) Channel ON Leakage $I_{D}, I_{S}(O N)$	$\begin{aligned} & \pm 0.01 \\ & \pm 10 \\ & \pm 0.01 \\ & \pm 10 \\ & \pm 0.01 \\ & \pm 10 \end{aligned}$	$\begin{aligned} & \pm 20 \\ & \pm 20 \\ & \pm 20 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \text { V } V_{D D}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{S}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{D}=1 \mathrm{~V} / 3 \mathrm{~V} ; \\ & \text { Test Circuit } 2 \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} ; \\ & \text { Test Circuit } 3 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text { or } 3 \mathrm{~V} \text {, Test Circuit } 4 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current I inl or $\mathrm{I}_{\text {inh }}$ $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 0.4 \\ & \\ & \pm 0.1 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ $\mathrm{t}_{\text {transition }}$ Break-Before-M ake Time Delay, t_{D} $\begin{aligned} & t_{\text {ON }}(E N) \\ & t_{\text {OFF }}(E N) \end{aligned}$ Charge Injection Off Isolation Channel-to-Channel Crosstalk $\begin{aligned} & -3 \mathrm{~dB} \text { Bandwidth } \\ & C_{S} \text { (OFF) } \\ & C_{D} \text { (OFF) } \\ & \text { ADG708 } \\ & \text { ADG709 } \\ & C_{D}, C_{S}(O N) \\ & \text { AD } 708 \\ & \text { ADG709 } \end{aligned}$	$\begin{array}{\|l} 18 \\ 8 \\ 18 \\ 8 \\ \pm 3 \\ -60 \\ -80 \\ -60 \\ -80 \\ 55 \\ 13 \\ 85 \\ 42 \\ 96 \\ 48 \end{array}$	30 1 30 15	ns typ ns max ns typ ns min ns typ ns max ns typ ns max pC typ dB typ dB typ dB typ dB typ M Hz typ pF typ pF typ pF typ pF typ pF typ	
POWER REQUIREMENTS IDD	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$

NOTES
${ }^{1}$ Temperature ranges are as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Speci \cdot cations subject to change without notice.

ADG758/ADG759- SPECIFICATIONS ${ }^{1}$

DUAL SUPPL $Y_{\left(V_{00}\right.}=+3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {SS }}=-3 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$

Parameter	B Version $-40^{\circ} \mathrm{C}$ +258 C to $+85^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On-Resistance (R_{ON}) On-Resistance M atch Between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On-Resistance Flatness ($\mathrm{R}_{\mathrm{FLAT}(\mathrm{On})}$)	$V_{S S}$ to $V_{D D}$ 2.5 4.5 5 0.4 0.8 0.6 1.0	V Ω typ $\Omega \max$ Ω typ Ω max Ω typ $\Omega \max$	$V_{S}=V_{S S} \text { to } V_{D D}, I_{D S}=10 \mathrm{~mA} ;$ Test Circuit 1 $\begin{aligned} & V_{S}=V_{S S} \text { to } V_{D D}, I_{D S}=10 \mathrm{~mA} \\ & V_{S}=V_{S S} \text { to } V_{D D}, I_{D S}=10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage I_{D} (OFF) Channel ON Leakage $I_{D}, I_{S}(O N)$	$\begin{array}{ll} \pm 0.01 & \\ \pm 10 & \pm 20 \\ \pm 0.01 & \\ \pm 10 & \pm 20 \\ \pm 0.01 & \\ \pm 10 & \pm 20 \end{array}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=+2.25 \mathrm{~V} /-1.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-1.25 \mathrm{~V} /+2.25 \mathrm{~V} \text {; } \\ & \text { Test Circuit } 2 \\ & \mathrm{~V}_{\mathrm{S}}=+2.25 \mathrm{~V} /-1.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=-1.25 \mathrm{~V} /+2.25 \mathrm{~V} \text {; } \\ & \text { Test Circuit 3 } \\ & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=+2.25 \mathrm{~V} /-1.25 \mathrm{~V}, \text { T est Circuit } 4 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current $\mathrm{I}_{\text {INLL }}$ or $\mathrm{I}_{\text {INH }}$ $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance	$\begin{array}{ll} & 2.0 \\ & 0.4 \\ 0.005 & \\ 2 & \pm 0.1 \end{array}$	V min $V \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ $t_{\text {transition }}$ Break-Before-M ake Time Delay, t_{D} t_{ON} (EN) $t_{0 f F}(E N)$ Charge Injection Off Isolation Channel-to-C hannel Crosstalk -3 dB Bandwidth C_{s} (OFF) C_{D} (OFF) AD G 708 ADG709 $C_{D}, C_{S}(O N)$ ADG708 ADG709	14 8 25 14 1 8 25 ± 3 15 -60 -80 -60 -80 55 13 85 42 96 48	ns typ ns max ns typ ns min ns typ ns max ns typ ns max pC typ dB typ dB typ dB typ dB typ MHz typ pF typ pF typ pF typ pF typ pF typ	
POWER REQUIREMENTS IDD $I_{s s}$	$\begin{array}{ll} 0.001 & 1.0 \\ 0.001 & 1.0 \end{array}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{SS}}=-3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$

NOTES
${ }^{1} \mathrm{~T}$ emperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Speci \cdot cations subject to change without notice.

ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1}}$

$\mathrm{V}_{\text {DD }}$ to $\mathrm{V}_{\text {SS }}$. 7 V	
$V_{\text {DD }}$ to GND	-0.3 V to +7 V
V ${ }_{\text {SS }}$ to GND . +0.3 V to -3.5 V	
Analog Inputs ${ }^{2}$	$\mathrm{V}_{\text {SS }}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , Whichever Occurs F irst
Peak Current, S or D 100 mA.	
Continuous Current, S or D	30 mA
Operating T emperature R ange	
Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$

CSP Package, Power Dissipation mW	
$\theta_{\text {JA }}$ Thermal Impedance	${ }^{\circ} \mathrm{C} / \mathrm{W}$
θ_{Jc} Thermal Impedance	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
V apor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Stresses above those listed under Absolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this speci \bullet cation is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2} O$ vervoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG 758/ADG 759 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of

WARNING!

 functionality.Table I. ADG758 Truth Table

A2	A1	AO	EN	Switch Condition
X	X	X	0	N O N E
0	0	0	1	1
0	0	1	1	2
0	1	0	1	3
0	1	1	1	4
1	0	0	1	5
1	0	1	1	6
1	1	0	1	7
1	1	1	1	8

$X=D$ on't C are
Table II. ADG759 Truth Table

A1	A0	EN	ON Switch Pair
X	X	0	N O N E
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4
$X=$ D on't C are.			

Exposed Pad tied to Substrate, $V_{S S}$

Model	Temperature Range	Package Description	Package Option
AD G 758BC P	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Chip Scale Package (CSP)	CP-20
AD G759BC P	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Chip Scale Package (CSP)	CP-20

TERMINOLOGY

$V_{\text {D }}$	M ost positive power supply potential.
$V_{\text {SS }}$	M ost negative power supply in a dual supply application. In single supply applications, this should be tied to ground at the device.
G N D	Ground (0 V) Reference.
S	Source Terminal. M ay be an input or output.
D	Drain Terminal. M ay be an input or output.
IN	Logic Control Input.
$\mathrm{R}_{\text {ON }}$	Ohmic resistance between D and S .
Rflation)	Flatness is defined as the difference between the maximum and minimum value of on-resistance as mea sured over the specified analog signal range.
I_{S} (OFF)	Source leakage current with the switch "OFF."
I_{D} (OFF)	Drain leakage current with the switch "OFF."
$I_{D}, I_{S}(O N)$	Channel leakage current with the switch "ON."
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog voltage on terminals D, S.
$C_{S}(O F F)$	"OFF" switch source capacitance. M easured with reference to ground.
$C_{D}(O F F)$	"OFF" switch drain capacitance. M easured with reference to ground.
$C_{D}, C_{S}(O N)$	"ON" switch capacitance. M easured with reference to ground.
CIN	Digital Input Capacitance.
$\mathrm{t}_{\text {transition }}$	Delay time measured between the 50% and 90% points of the digital inputs and the switch "ON" condition when switching from one address state to another.
$t_{\text {ON }}$ (EN)	Delay time between the 50% and 90% points of the EN digital input and the switch "ON" condition.
$\mathrm{t}_{\text {OFF }}$ (EN)	Delay time between the 50% and 90% points of the EN digital input and the switch "OFF" condition.
topen	"OFF" time measured between the 80% points of both switches when switching from one address state to another.
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Crosstalk	A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.
Charge	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Injection	
Bandwidth	The frequency at which the output is attenuated by 3 dBs .
On Response	The frequency response of the "ON" switch.
On Loss	The loss due to the ON resistance of the switch.
$\mathrm{V}_{\text {INL }}$	M aximum input voltage for Logic "0."
VINH	M inimum input voltage for Logic "1."
$\mathrm{I}_{\text {INL }}\left(\mathrm{I}_{\text {INH }}\right)$	Input current of the digital input.
$1{ }_{\text {D D }}$	Positive Supply Current.
$\underline{I_{S S}}$	N egative Supply Current.

Figure 1. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Single Supply

Figure 2. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Dual Supply

Figure 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

Figure 4. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Single Supply

Figure 5. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, Dual Supply

Figure 6. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

ADG758/ADG759

Figure 7. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 8. Leakage Currents as a Function of $V_{D}\left(V_{S}\right)$

Figure 9. Leakage Currents as a Function of Temperature

Figure 10. Leakage Currents as a Function of Temperature

Figure 11. Supply Current vs. Input Switching Frequency

Figure 12. Off Isolation vs. Frequency

Figure 13. Crosstalk vs. Frequency

Figure 14. On Response vs. Frequency

Figure 15. Charge Injection vs. Source Voltage

Test Circuit 1. On Resistance

Test Circuit 2. Is (OFF)

* SIMILAR CONNECTION FOR ADG759

Test Circuit 3. I_{D} (OFF)

Test Circuit 4. $I_{D}(O N)$

Test Circuit 5. Switching Time of Multiplexer, $t_{\text {TRANSITION }}$

* SIMILAR CONNECTION FOR ADG759

Test Circuit 6. Break-Before-Make Delay, topen

* SIMILAR CONNECTION FOR ADG759

Test Circuit 7. Enable Delay, tON (EN), tOFF (EN)

*SIMILAR CONNECTION FOR ADG759

Test Circuit 8. Charge Injection

INSERTION LOSS $=$ 20LOG $_{10}\left(\frac{\text { VOUT WITH SWITCH }}{\mathrm{V}_{\text {OUT WITHOUT SWITCH }}}\right)$

* SIMILAR CONNECTION FOR ADG759
** CONNECT TO 2.4V FOR BANDWIDTH MEASUREMENTS
Test Circuit 9. OFF Isolation and Bandwidth

CHANNEL-TO-CHANNEL CROSSTALK $=20 L O G_{10} \frac{V_{\text {OUT }}}{V_{S}}$
${ }^{*}$ SIMILAR CONNECTION FOR ADG759

Test Circuit 10. Channel-to-Channel Crosstalk

Power-Supply Sequencing

When using CMOS devices, care must be taken to ensure correct power-supply sequencing. Incorrect power-supply sequencing can result in the device being subjected to stresses beyond the maximum ratings listed in the data sheet. Digital and analog inputs should always be applied after power supplies and ground. For single supply operation, V_{SS} should be tied to GND as close to the device as possible.

PRELIMINARY TECHNICAL DATA

ADG758/ADG759

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

