

# CMOS 3 V/5 V, Improved Wide Bandwidth Quad 2:1 Mux

# **Preliminary Technical Data**

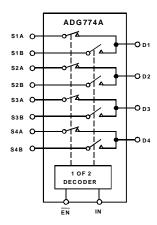
ADG774A

**FEATURES** 

Bandwidth 400 MHz

Low Insertion Loss and On Resistance: 2.2  $\Omega$  Typical

On-Resistance Flatness < 1  $\Omega$ Single 3 V/5 V Supply Operation Very Low Distortion: <0.3%


Low Quiescent Supply Current (1 nA Typical)

**Fast Switching Times** 

t<sub>ON</sub> 6 ns t<sub>OFF</sub> 3ns

TTL/CMOS Compatible

### **FUNCTIONAL BLOCK DIAGRAM**



#### GENERAL DESCRIPTION

The ADG774A is a monolithic CMOS device comprising four 2:1 multiplexer/demultiplexers with high impedance outputs. The CMOS process provides low power dissipation yet gives high switching speed and low on resistance. The on-resistance variation is typically less than 0.5  $\Omega$  over the input signal range.

The bandwidth of the ADG774A is typically 400 MHz and this, coupled with low distortion (typically 0.3%), makes the part suitable for the switching of high speed data signals.

The on-resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion. CMOS construction ensures ultralow power dissipation.

The ADG774A operates from a single 3.3 V/5 V supply and is TTL logic compatible. The control logic for each switch is shown in the Truth Table.

These switches conduct equally well in both directions when ON. In the OFF condition, signal levels up to the supplies are blocked. The ADG774A switches exhibit break-before-make switching action.

#### **PRODUCT HIGHLIGHTS**

- 1. Wide bandwidth data rates 400 MHz.
- 2. Ultralow Power Dissipation.
- 3. Low leakage over temperature.
- 4. Break-Before-Make Switching.
  This prevents channel shorting when the switches are configured as a multiplexer.
- 5. Crosstalk is typically -70 dB @ 10 MHz.
- 6. Off isolation is typically -65 dB @ 10 MHz.

# REV.PrD

ADG774A

Preliminary Technical Data Single Supply ( $V_{DD} = +5.0 \text{ V} \pm 10\%$ , GND = 0 V, All specifications  $T_{MIN}$  to  $T_{MAX}$  unless otherwise noted)

|                                                      | B Version                       |                  |                  | Test Conditions/Comments                                                                      |  |
|------------------------------------------------------|---------------------------------|------------------|------------------|-----------------------------------------------------------------------------------------------|--|
| Parameter                                            | $T_{MIN}$ to $+25$ °C $T_{MAX}$ |                  | Units            |                                                                                               |  |
|                                                      | +23 C                           | T <sub>MAX</sub> | Units            | rest conditions/comments                                                                      |  |
| ANALOG SWITCH                                        |                                 |                  |                  |                                                                                               |  |
| Analog Signal Range                                  |                                 | 0 V to 2.5 V     | V                |                                                                                               |  |
| On-Resistance (R <sub>ON)</sub>                      | 2.2                             |                  | $\Omega$ typ     | $V_{\rm D} = 0 {\rm V} \ {\rm to} \ 1 \ {\rm V}, \ {\rm I}_{\rm S} = -10 \ {\rm mA} \ ;$      |  |
|                                                      | 3.5                             | 4                | $\Omega$ max     |                                                                                               |  |
| On-Resistance Match Between                          |                                 |                  |                  |                                                                                               |  |
| Channels ( $\Delta R_{ON}$ )                         | 0.15                            |                  | $\Omega$ typ     | $V_{\rm D} = 0 \text{V to } 1 \text{ V}, I_{\rm S} = -10 \text{ mA};$                         |  |
|                                                      |                                 | 0.5              | $\Omega$ max     |                                                                                               |  |
| On-Resistance Flatness (R <sub>FLAT(ON)</sub> )      | 0.3                             |                  | $\Omega$ typ     | $V_D = 0V \text{ to } 1 \text{ V}, I_S = -10 \text{ mA};$                                     |  |
|                                                      |                                 | 0.6              | $\Omega$ max     |                                                                                               |  |
| LEAKAGE CURRENTS                                     |                                 |                  |                  |                                                                                               |  |
| Source OFF Leakage I <sub>S</sub> (OFF)              | ±0.001                          |                  | nA typ           | $V_D = 3 \text{ V}, V_S = 1 \text{ V}; V_D = 1 \text{ V}, V_S = 3 \text{ V}$                  |  |
| - G- 3 (- )                                          | ±0.1                            | ±0.25            | nA max           | Test Circuit 2                                                                                |  |
| Drain OFF Leakage I <sub>D</sub> (OFF)               | ±0.001                          |                  | nA typ           | $V_D = 3 \text{ V}, V_S = 1 \text{ V}; V_D = 1 \text{ V}, V_S = 3 \text{ V}$                  |  |
|                                                      | ±0.1                            | ±0.25            | nA max           | Test Circuit 2                                                                                |  |
| Channel ON Leakage ID, IS (ON)                       | ±0.001                          |                  | nA typ           | $V_D = V_S = 3 \text{ V}; V_D = V_S = 1 \text{ V};$                                           |  |
| 2. γ3 (9. γ.)                                        | ±0.1                            | ±0.25            | nA max           | Test Circuit 3                                                                                |  |
| DIGITAL INPUTS                                       |                                 |                  |                  |                                                                                               |  |
|                                                      |                                 | 2.4              | V min            |                                                                                               |  |
| Input High Voltage, V <sub>INH</sub>                 |                                 | 2.4<br>0.8       | V min<br>V max   |                                                                                               |  |
| Input Low Voltage, V <sub>INL</sub><br>Input Current |                                 | 0.6              | V IIIdX          |                                                                                               |  |
| •                                                    | ± 0.001                         |                  | u A tum          | $V_{IN} = V_{INI}$ or $V_{INH}$                                                               |  |
| $I_{INL}$ or $I_{INH}$                               | ± 0.001                         | ±0.1             | μA typ           | $\mathbf{v}_{\mathrm{IN}} = \mathbf{v}_{\mathrm{INL}}  \mathbf{o}  \mathbf{v}_{\mathrm{INH}}$ |  |
| Digital Input Capacitance                            |                                 | 3                | μA max<br>pF typ |                                                                                               |  |
|                                                      |                                 | 3                | pr typ           |                                                                                               |  |
| DYNAMIC CHARACTERISTICS <sup>2</sup>                 |                                 |                  |                  |                                                                                               |  |
| $t_{ON}, t_{ON} (\overline{EN})$                     |                                 | 6                | ns typ           | $C_L = 35 \text{ pF}, R_L = 50 \Omega;$                                                       |  |
| <u></u>                                              |                                 | 12               | ns max           | $V_S = +2 V$ ; Test Circuit 4                                                                 |  |
| $t_{OFF}, t_{OFF} (\overline{EN})$                   |                                 | 3                | ns typ           | $C_L = 35 \text{ pF}, R_L = 50 \Omega, ;$                                                     |  |
|                                                      |                                 | 6                | ns max           | $V_S = +2 V$ ; Test Circuit 4                                                                 |  |
| Break-Before-Make Time Delay, $t_D$                  |                                 | 3                | ns typ           | $C_L = 35 \text{ pF}, R_L = 50 \Omega, ;$                                                     |  |
|                                                      |                                 | 1                | ns min           | $V_{S1} = V_{S2} = +2 \text{ V}$ ; Test Circuit 5                                             |  |
| Off Isolation                                        |                                 | -65              | dB typ           | $f = 10$ MHz, $R_L = 50$ Ω; Test Circuit 7                                                    |  |
| Channel-to-Channel Crosstalk                         |                                 | -70              | dB typ           | $f = 10$ MHz, $R_L = 50$ Ω; Test Circuit 8                                                    |  |
| Bandwidth - 3dB                                      |                                 | 400              | MHz typ          | Test Circuit 6; $R_L = 50 \Omega$ ;                                                           |  |
| Distortion                                           |                                 | 0.3              | % typ            | $R_L = 100 \Omega$                                                                            |  |
| Charge Injection                                     |                                 | 6                | pC typ           | $C_L = 1 \text{ nF; Test Circuit 9; } V_S = 0 \text{ V;}$                                     |  |
| $C_{S}$ (OFF)                                        |                                 | 5                | pF typ           |                                                                                               |  |
| $C_D$ (OFF)                                          |                                 | 7.5              | pF typ           |                                                                                               |  |
| $C_D$ , $C_S$ (ON)                                   |                                 | 12               | pF typ           |                                                                                               |  |
| POWER REQUIREMENTS                                   |                                 |                  |                  | $V_{\rm DD} = +5.5 \text{ V}$                                                                 |  |
|                                                      |                                 |                  |                  | Digital Inputs = $0 \text{ V or } V_{DD}$                                                     |  |
| $I_{\mathrm{DD}}$                                    |                                 | 1                | μA max           |                                                                                               |  |
|                                                      | 0.001                           |                  | μΑ typ           |                                                                                               |  |

-2-

¹Temperature ranges are as follows: B Versions: −40°C to +85°C.

<sup>&</sup>lt;sup>2</sup>Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

# PRELIMINARY TECHNICAL DATA

 $\label{eq:Single Supply} \textbf{Single Supply} \quad \text{(V}_{DD} = +3.0 \text{ V } \pm 10\% \text{ , GND} = 0 \text{ V, All specifications } T_{MIN} \text{ to } T_{MAX} \text{ unless otherwise noted)}$ 

|                                                         | B Version                    |              |              | Test Conditions/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|---------------------------------------------------------|------------------------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Parameter                                               | $T_{MIN}$ to +25°C $T_{MAX}$ |              | Units        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ANALOG SWITCH                                           |                              | -            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Analog Signal Range                                     |                              | 0 V to 1.5 V | V            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| On-Resistance (R <sub>ON)</sub>                         | 4                            |              | Ωtyp         | $V_D = 0V \text{ to } 1 \text{ V}, I_S = -10 \text{ mA};$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| 011 10010tulife (11014)                                 | 6                            | 7            | $\Omega$ max | The section of the se |  |
| On-Resistance Match Between                             |                              | ·            |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Channels ( $\Delta R_{ON}$ )                            | 0.15                         |              | $\Omega$ typ | $V_D = 0V \text{ to } 1 \text{ V}, I_S = -10 \text{ mA};$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| olv olv                                                 |                              | 0.5          | $\Omega$ max | , s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| On Resistance Flatness (R <sub>FLAT(ON)</sub> )         | 1.5                          |              | $\Omega$ typ | $V_D = 0V \text{ to } 1 \text{ V}, I_S = -10 \text{ mA};$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| ( PLAT(ON))                                             |                              | 3            | $\Omega$ max | l D T T T T T T T T T T T T T T T T T T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| LEAKAGE CURRENTS                                        |                              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Source OFF Leakage I <sub>S</sub> (OFF)                 | ±0.001                       |              | nA typ       | $V_D = 2 \text{ V}, V_S = 1 \text{ V}; V_D = 1 \text{ V}, V_S = 2 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| bounce of the Leakage is (OFT)                          | ±0.001                       | ±0.25        | nA typ       | Test Circuit 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Drain OFF Leakage I <sub>D</sub> (OFF)                  | ±0.1<br>±0.001               | ±0.25        | nA typ       | $V_D = 2 \text{ V}, V_S = 1 \text{ V}; V_D = 1 \text{ V}, V_S = 2 \text{ V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Diani Oli Leanage ID (Oli)                              | ±0.001                       | ±0.25        | nA typ       | $v_D = 2 v$ , $v_S = 1 v$ , $v_D = 1 v$ , $v_S = 2 v$<br>Test Circuit 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Channel ON Leakage I <sub>D</sub> , I <sub>S</sub> (ON) | ±0.1<br>±0.001               | ۷۰.۵ ±       | nA max       | $V_D = V_S = 2V; V_D = V_S = 1 V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Chainer Orv Leakage ID, IS (OIV)                        | ±0.001<br>±0.1               | ±0.25        | nA typ       | $v_D = v_S = 2v$ , $v_D = v_S = 1v$<br>Test Circuit 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                         | ±0.1                         | ±0.23        | IIA IIIax    | 1 cst Circuit 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| DIGITAL INPUTS                                          |                              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Input High Voltage, $ m V_{INH}$                        |                              | 2.0          | V min        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Input Low Voltage, V <sub>INL</sub>                     |                              | 0.4          | V max        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Input Current                                           |                              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $I_{INL}$ or $I_{INH}$                                  | 0.001                        |              | μA typ       | $V_{IN} = V_{INL}$ or $V_{INH}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                                                         |                              | ±0.1         | μA max       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Digital Input Capacitance                               |                              | 3            | pF typ       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| DYNAMIC CHARACTERISTICS <sup>2</sup>                    |                              |              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $t_{ON}, t_{ON} (\overline{EN})$                        |                              | 7            | ns typ       | $C_L = 35 \text{ pF}, R_L = 50 \Omega, ;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                                                         |                              | 14           | ns max       | $V_S = +1.5 \text{ V}$ ; Test Circuit 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| $t_{OFF}, t_{OFF} (\overline{EN})$                      |                              | 4            | ns typ       | $C_L = 35 \text{ pF}, R_L = 50 \Omega;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                         |                              | 8            | ns max       | $V_S = +1.5 \text{ V}$ ; Test Circuit 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Break-Before-Make Time Delay, t <sub>D</sub>            |                              | 3            | ns typ       | $C_L = 35 \text{ pF}, R_L = 50 \Omega;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| <b>V</b> 2                                              |                              | 1            | ns min       | $V_{S1} = V_{S2} = +1.5V$ ; Test Circuit 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Off Isolation                                           |                              | -65          | dB typ       | $f = 10 \text{ MHz}, R_L = 50 \Omega$ ; Test Circuit 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Channel-to-Channel Crosstalk                            |                              | -70          | dB typ       | $f = 10 \text{ MHz}, R_L = 50 \Omega$ ; Test Circuit 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Bandwidth - 3dB                                         |                              | 400          | MHz typ      | Test Circuit 6; $R_L = 50 \Omega$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Distortion $\Delta R_{ON}/R_L$                          |                              | 1.5          | % typ        | $R_L = 100 \Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Charge Injection                                        |                              | 4            | pC typ       | $C_L = 1$ nF; Test Circuit 9; $V_S = 0$ V;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| C <sub>S</sub> (OFF)                                    |                              | 5            | pF typ       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| C <sub>D</sub> (OFF)                                    |                              | 7.5          | pF typ       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| $C_D$ , $C_S$ (ON)                                      |                              | 12           | pF typ       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| POWER REQUIREMENTS                                      |                              |              |              | $V_{\rm DD} = +3.3V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                         |                              |              |              | Digital Inputs = 0 V or $V_{DD}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| $I_{\mathrm{DD}}$                                       |                              | 1            | μA max       | 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| -טע                                                     | 0.001                        |              | μA typ       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

# NOTES

Specifications subject to change without notice.

Table I. Truth Table

| EN | IN | D1   | D2   | D3   | D4   | Function |
|----|----|------|------|------|------|----------|
| 1  | X  | Hi-Z | Hi-Z | Hi-Z | Hi-Z | DISABLE  |
| 0  | 0  | S1A  | S2A  | S3A  | S4A  | IN = 0   |
| 0  | 1  | S1B  | S2B  | S3B  | S4B  | IN = 1   |

REV. PrD -3-

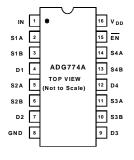
 $<sup>^1\</sup>mathrm{Temperature}$  ranges are as follows: B Versions: -40°C to +85°C.  $^2\mathrm{Guaranteed}$  by design, not subject to production test.

# PRELIMINARY TECHNICAL DATA

# ADG774A

# **Preliminary Technical Data**

# ABSOLUTE MAXIMUM RATINGS1


| $(T_A = +25^{\circ}C \text{ unless otherwise noted})$                             |
|-----------------------------------------------------------------------------------|
| $V_{DD}$ to GND $$                                                                |
| Analog, Digital Inputs <sup>2</sup> $-0.3 \text{ V to V}_{DD} + 0.3 \text{ V or}$ |
| 30 mA, Whichever Occurs First                                                     |
| Continuous Current, S or D                                                        |
| Peak Current, S or D                                                              |
| (Pulsed at 1 ms, 10% Duty Cycle max)                                              |
| Operating Temperature Range                                                       |
| Industrial (B Version)40°C to +85°C                                               |
| Storage Temperature Range65°C to +150°C                                           |
| Junction Temperature +150°C                                                       |
| QSOP Package, Power Dissipation                                                   |
| q <sub>JA</sub> Thermal Impedance                                                 |
| Lead Temperature, Soldering                                                       |
| Vapor Phase (60 sec) +215°C                                                       |
| Infrared (15 sec)+220°C                                                           |
|                                                                                   |

#### NOTES

<sup>1</sup>Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

<sup>2</sup>Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

# PIN CONFIGURATION (QSOP)



# **TERMINOLOGY**

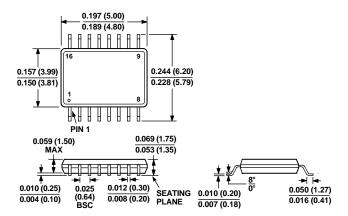
| $\overline{V_{ m DD}}$ | Most Positive Power Supply Potential.                                                                                                                    |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| GND                    | Ground (0 V) Reference.                                                                                                                                  |
| S                      | Source Terminal. May be an input or output.                                                                                                              |
| D<br>D                 | v ·                                                                                                                                                      |
| IN                     | Drain Terminal. May be an input or output.                                                                                                               |
|                        | Logic Control Input.                                                                                                                                     |
| EN                     | Logic Control Input.                                                                                                                                     |
| R <sub>ON</sub>        | Ohmic resistance between D and S.                                                                                                                        |
| $DR_{ON}$              | On Resistance match between any two channels i.e., $R_{\rm ON}\text{max}$ – $R_{\rm ON}\text{min}.$                                                      |
| R <sub>FLAT(ON)</sub>  | Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.         |
| I <sub>S</sub> (OFF)   | Source Leakage Current with the switch "OFF."                                                                                                            |
| I <sub>D</sub> (OFF)   | Drain Leakage Current with the switch "OFF."                                                                                                             |
| $I_D$ , $I_S$ (ON)     | Channel Leakage Current with the switch "ON."                                                                                                            |
| $V_D(V_S)$             | Analog Voltage on Terminals D, S.                                                                                                                        |
| C <sub>S</sub> (OFF)   | "OFF" Switch Source Capacitance.                                                                                                                         |
| C <sub>D</sub> (OFF)   | "OFF" Switch Drain Capacitance.                                                                                                                          |
| $C_D$ , $C_S$ (ON)     | "ON" Switch Capacitance.                                                                                                                                 |
| $t_{ON}$               | Delay between applying the digital control input and the output switching on. See Test Circuit 4.                                                        |
| $t_{\rm OFF}$          | Delay between applying the digital control input and the output switching Off.                                                                           |
| $t_D$                  | "OFF" time or "ON" time measured between<br>the 90% points of both switches, when switching<br>from one address state to another. See Test<br>Circuit 5. |
| Crosstalk              | A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.                                   |
| Off Isolation          | A measure of unwanted signal coupling through an "OFF" switch.                                                                                           |
| Bandwidth              | Frequency response of the switch in the ON state measured at 3 dB down.                                                                                  |
| Distortion             | $R_{\rm FLAT(ON)}/R_{\rm L}$                                                                                                                             |

## **ORDERING GUIDE**

| Model      | Temperature Range | Package Descriptions                           | Package Options |
|------------|-------------------|------------------------------------------------|-----------------|
| ADG774ABRQ | -40°C to +85°C    | RQ = 0.15" Quarter Size Outline Package (QSOP) | RQ-16           |

#### **CAUTION**

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG774A features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.




-4- Rev.PrD

# **OUTLINE DIMENSIONS**

Dimensions shown in inches and (mm).

16-Lead QSOP (RQ-16)



REV. PrD -5-