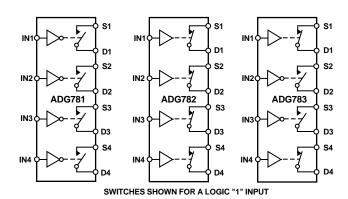


CMOS, Low Voltage 2.5 Ω Quad SPST Switches

Preliminary Technical Data

ADG781/ADG782/ADG783


FEATURES

1.8 V to 5.5 V Single Supply Low On-Resistance 2.5 Ω On-Resistance Flatness -3dB Bandwidth >200MHz 100 pA Leakage Currents 14 ns Switching Times 20-Lead Chip Scale Package Low Power Consumption TTL/CMOS-Compatible Inputs

APPLICATIONS

Battery Powered Systems Communication Systems Sample and Hold Systems Audio Signal Routing Relay Replacement Video Switching

FUNCTIONAL BLOCK DIAGRAMS

GENERAL DESCRIPTION

The ADG781, ADG782 and ADG783 are monolithic CMOS devices containing four independently selectable switches. These switches are designed on an advanced submicron process that provides low power dissipation yet gives high switching speed, low on resistance, low leakage currents and high bandwidth.

They are designed to operate from a single +1.8 V to +5.5 V supply, making them ideal for use in battery powered instruments and with the new generation of DACs and ADCs from Analog Devices. Fast switching times and high bandwidth make the part suitable for video signal switching. The ADG781, ADG782 and ADG783 contain four independent single-pole/single throw (SPST) switches. The ADG781 and ADG782 differ only in that the digital control logic is inverted. The ADG781 switches are turned on with a logic low on the appropriate control input, while a logic high is required to turn on the switches of the ADG782. The ADG783 contains two switches whose digital control logic is similar to the ADG781, while the logic is inverted on the other two switches.

Each switch conducts equally well in both directions when ON. The ADG783 exhibits break-before-make switching

action. The ADG781/ADG782/ADG783 are available in 20-lead Chip Scale Packages

PRODUCT HIGHLIGHTS

- 1. +1.8~V to +5.5~V Single Supply Operation. The ADG781, ADG782 and ADG783 offer high perfor mance and are fully specified and guaranteed with +3V and +5~V supply rails.
- 2. Very Low R_{ON} (4.5 Ω max at +5 V, 8 Ω max at +3 V). At supply voltage of +1.8 V, R_{ON} is typically 35 Ω over the temperature range.
- 3. Low On-Resistance Flatness.
- 4. -3 dB Bandwidth >200 MHz.
- 5. Fast t_{ON}/t_{OFF} .
- 6. Break-Before-Make Switching.
 This prevents channel shorting when the switches are configured as a multiplexer (ADG783 only).

REV. PrB

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

$ADG781/ADG782/ADG783 - SPECIFICATIONS^{1} (\textit{V}_{DD} = 5 \ \textit{V} \ \pm 10\%, \ \textit{GND} = 0 \ \textit{V}, \ \textit{unless otherwise noted})$

	B Ver	sion -40°C		
Parameter	+25°C	to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to $V_{\rm DD}$	V	
On-Resistance (R _{ON})	2.5	22	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$
. 010	4	4.5	Ω max	Test Circuit 1
On-Resistance Match Between		0.05	Ω typ	
Channels (ΔR _{ON})		0.3	Ω max	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
On-Resistance Flatness (R _{FLAT(ON)})	0.5		Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA}$
(1211(614)		1.0	Ω max	22. 20
LEAKAGE CURRENTS				$V_{\rm DD} = 5.5 \text{ V}$
Source OFF Leakage I _S (OFF)	± 0.01		nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$
	± 10	± 20	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	± 0.01		nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$
	±10	± 20	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	± 0.01		nA typ	$V_D = V_S = 1 \text{ V}$, or 4.5 V, Test Circuit 3
0 2 5	±10	± 20	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
IVE IVII		± 0.1	μA max	IV IVE IVE
C _{IN} , Digital Input Capacitance	2		pF typ	
DYNAMIC CHARACTERISTICS ²				
t _{ON}	11		ns typ	$R_L = 300 \ \Omega, \ C_L = 35 \ pF$
-010		16	ns max	$V_S = 3 \text{ V}$, Test Circuit 4
$t_{ m OFF}$	6		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
FOFF		10	ns max	$V_S = 3 \text{ V}$, Test Circuit 4
Break-Before-Make Time Delay, t _D	6		ns typ	$R_{L} = 300 \ \Omega, \ C_{L} = 35 \ pF$
J - 1		1	ns min	$V_{S1} = V_{S2} = 3$ V, Test Circuit 5
Charge Injection	±3		pC typ	$V_S = 2 V, R_S = 0 \Omega, C_L = 1 nF;$
3				Test Circuit 6
Off Isolation	-58		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-78		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 1 MHz;$
			J 1	Test Circuit 7
Channel-to-Channel Crosstalk	-90		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz$
				Test Circuit 8
-3 dB Bandwidth	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
C_{S} (OFF)	10		pF typ	
C_D (OFF)	10		p <u>F</u> typ	
$C_D, C_S (ON)$	22		pF typ	
POWER REQUIREMENTS				$V_{\rm DD} = 5.5 \text{ V}$
I_{DD}	0.001		μA typ	Digital Inputs = 0 V or 5.5 V
		1.0	μA max	_

 $^{^1} Temperature \ range$ is as follows: B Version: –40 $^{\circ} C$ to +85 $^{\circ} C.$ $^2 Guaranteed$ by design, not subject to production test.

Speciocations subject to change without notice.

ADG781/ADG782/ADG783

$SPECIFICATIONS^{1} \quad \text{(V}_{DD} = 3 \text{ V} \pm 10\%, \text{ GND} = 0 \text{ V}, \text{ unless otherwise noted)}$

	B Ver	sion -40°C		
Parameter	+258C	to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$0~V~to~V_{\rm DD}$	V	
On-Resistance (R _{ON})	5	5.5	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_{DS} = 10 \text{ mA};$
		8	Ω max	Test Circuit 1
On-Resistance Match Between	0.1		Ω typ	$V_S = 0 \text{ V to } V_{DD}$, $I_{DS} = 10 \text{ mA}$
Channels (ΔR_{ON})		0.3	Ω max	
On-Resistance Flatness (R _{FLAT(ON)})		2.5	Ω typ	$V_S = 0 \text{ V to } V_{DD}$, $I_{DS} = 10 \text{ mA}$
LEAKAGE CURRENTS				$V_{DD} = 3.3 \text{ V}$
Source OFF Leakage I _S (OFF)	±0.01		nA typ	$V_{S} = 3 \text{ V/1 V}, V_{D} = 1 \text{ V/3 V};$
	±10	± 20	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01		nA typ	$V_{S} = 3 \text{ V/1 V}, V_{D} = 1 \text{ V/3 V};$
0 5 ,	±10	± 20	nA max	Test Circuit 2
Channel ON Leakage ID, IS (ON)	±0.01		nA typ	$V_S = V_D = 1 \text{ V or } 3 \text{ V, Test Circuit } 3$
0 2 3 ()	±10	± 20	nA max	,
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.4	V max	
Input Current		0.1	\ \ IIIux	
I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
TINE OF TIME	0.000	± 0.1	μA max	TIN TINE OF TINE
C _{IN} , Digital Input Capacitance	2		pF typ	
DYNAMIC CHARACTERISTICS ²			1 31	
	13		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$
t_{ON}	10	20	ns max	$V_S = 2 \text{ V}$, Test Circuit 4
$t_{ m OFF}$	7	20	ns typ	$R_L = 300 \Omega, C_L = 35 \text{ pF}$
OFF	•	12	ns max	$V_S = 2 \text{ V}$, Test Circuit 4
Break-Before-Make Time Delay, t _D	7	1~	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		1	ns min	$V_{S1} = V_{S2} = 2$ V, Test Circuit 5
Charge Injection	± 3		pC typ	$V_S = 1.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
J. J				Test Circuit 6
Off Isolation	-58		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-78		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
				Test Circuit 7
Channel-to-Channel Crosstalk	-90		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz$
				Test Circuit 8
-3 dB Bandwidth	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 9
C_S (OFF)	10		pF typ	
C_D (OFF)	10		pF typ	
$C_D, C_S (ON)$	22		pF typ	
POWER REQUIREMENTS				$V_{\rm DD} = 3.3 \text{ V}$
I_{DD}	0.001		μA typ	Digital Inputs = 0 V or 3.3 V
		1.0	μA max	

REV. PrB -3-

¹Temperature ranges are as follows: B Version: -40°C to +85°C.

²Guaranteed by design, not subject to production test.

Speci•cations subject to change without notice.

ADG781/ADG782/ADG783

ABSOLUTE MAXIMUM RATINGS1

$(T_A = 25^{\circ}C \text{ unless otherwise noted})$
V_{DD} to GND0.3 V to +6 V
Analog Inputs ² V_{SS} – 0.3 V to V_{DD} +0.3 V or
30 mA, Whichever Occurs First
Digital Inputs ² 0.3 V to $V_{\rm DD}$ +0.3 V or
30 mA, Whichever Occurs First
Peak Current, S or D 100 mA
(Pulsed at 1 ms, 10% Duty Cycle max)
Continuous Current, S or D 30 mA
Operating Temperature Range
Industrial (B Version)40°C to +85°C
Storage Temperature Range65°C to +150°C
Junction Temperature
CSP Package, Power Dissipation TBD mW
θ_{JA} Thermal Impedance TBD°C/W

θ_{JC} Thermal ImpedanceTBD	o°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	215°C
Infrared (15 sec)	

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this speci•cation is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

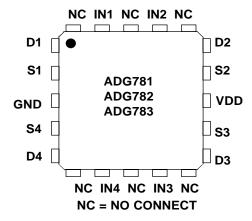
²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG781/ADG782/ADG783 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG781BCP	-40°C to +85°C	Chip Scale Package (CSP)	CP-20
ADG782BCP ADG783BCP	-40°C to +85°C -40°C to +85°C	Chip Scale Package (CSP) Chip Scale Package (CSP)	CP-20 CP-20


Table I. ADG781/ADG782 Truth Table

ADG781 In	ADG782 In	Switch Condition
0	1	ON
1	0	OFF

Table II. ADG783 Truth Table

Logic	Switch 1, 4	Switch 2, 3
0	OFF	ON
1	ON	OFF

PIN CONFIGURATIONS

Exposed Pad tied to Substrate, GND

._ REV. PrB

ADG781/ADG782/ADG783

TERMINOLOGY

$\overline{V_{DD}}$	Most positive power supply potential.
GND	Ground (0 V) Reference.
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
IN	Logic Control Input.
R_{ON}	Ohmic resistance between D and S.
$R_{\rm FLAT(ON)}$	Flatness is defined as the difference between the maximum and minimum value of on-resistance as mea sured over the specifed analog signal range.
ΔR_{ON} I_S (OFF)	On resistance match between any two channels, i.e $R_{\rm ON}$ max- $R_{\rm ON}$ min. Source leakage current with the switch "OFF."
I _D (OFF)	Drain leakage current with the switch "OFF."
I_D , I_S (ON)	Channel leakage current with the switch "ON."
V_D (V_S)	Analog voltage on terminals D, S.
C_S (OFF)	"OFF" switch source capacitance. Measured with reference to ground.
C_D (OFF)	"OFF" switch drain capacitance. Measured with reference to ground.
C_D , C_S (ON)	"ON" switch capacitance. Measured with reference to ground.
C_{IN}	Digital Input Capacitance.
t_{ON}	Delay time between applying the digital control input and the switch turning on.
t_{OFF}	Delay time between applying the digital control input and the switch turning off.
t_D	"OFF" time measured between the 90% points of both switches when switching from one address state to another (ADG783 only).
Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
Crosstalk	A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.
Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output during switching.
Bandwidth	The frequency at which the output is attenuated by 3 dBs.
On Response	The frequency response of the "ON" switch.
On Loss	The loss due to the ON resistance of the switch.
V_{INL}	Maximum input voltage for Logic "0."
V_{INH}	Minimum input voltage for Logic "1."
I_{INL} (I_{INH})	Input current of the digital input.
I_{DD}	Positive Supply Current.

REV. PrB -5-

ADG781/ADG782/ADG783 Typical Performance Characteristics-

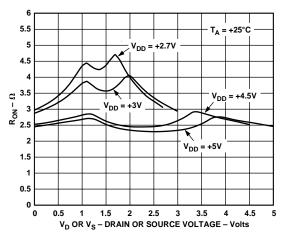


Figure 1. On Resistance as a Function of V_D (V_S) for Single Supply

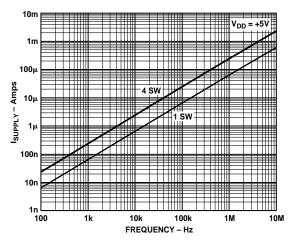


Figure 4. Supply Current vs. Input Switching Frequency

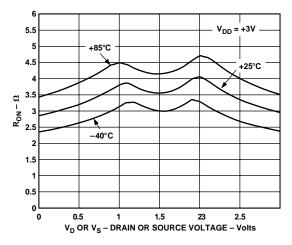


Figure 2. On Resistance as a Function of V_D (V_S) for Different Temperatures, $V_{DD} = 3 \ V$.

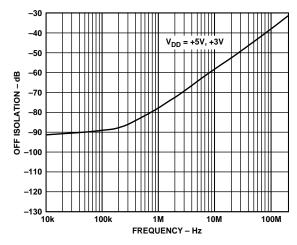


Figure 5. Off Isoltaion vs. Frequency

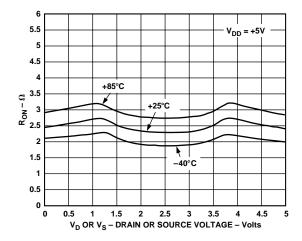


Figure 3. On Resistance as a Function of V_D (V_S) for Different Temperatures, $V_{DD} = 5 \ V$.

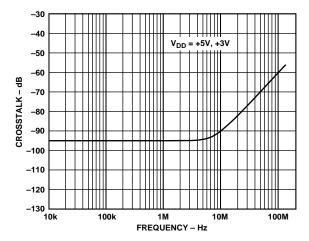


Figure 6. Crosstalk vs. Frequency

-6- REV. PrB

ADG781/ADG782/ADG783

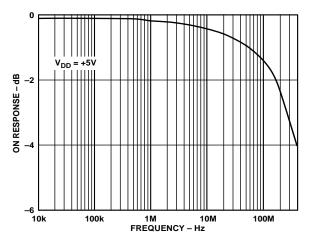


Figure 7. On Response vs. Frequency

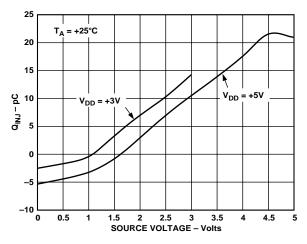
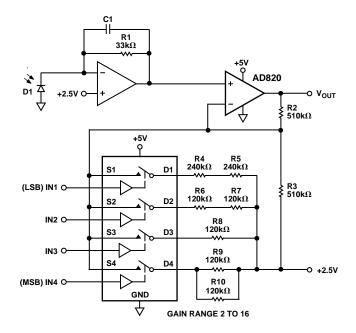
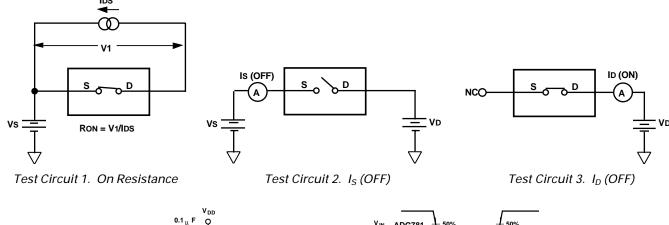
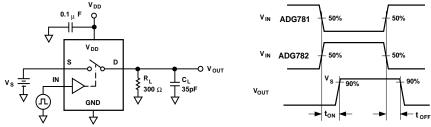


Figure 8. Charge Injection vs. Source Voltage

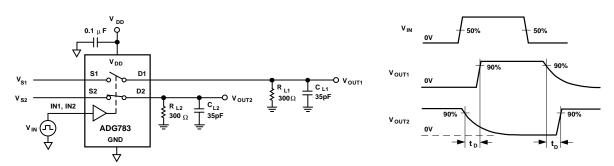
APPLICATIONS

Figure 9 illustrates a photodetector circuit with programmable gain. With the resistor values shown in the circuit and using different combinations of switches, gains in the range of 2 to 16 can be achieved.

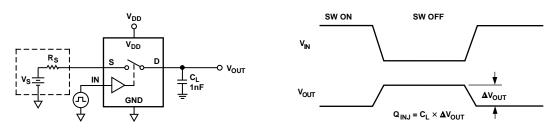




Figure 9. Photodetector Circuit with Programmable Gain

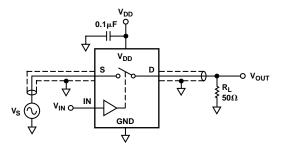
REV. PrB -7-


ADG781/ADG782/ADG783

Test Circuits



Test Circuit 4. Switching Time


Test Circuit 5. Break-Before-Make Delay, t_D

Test Circuit 6. Charge Injection

-8- REV. PrB

ADG781/ADG782/ADG783

Test Circuit 7. OFF Isolation

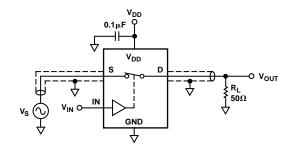
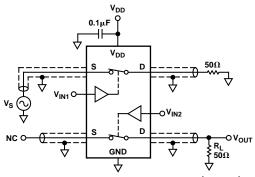
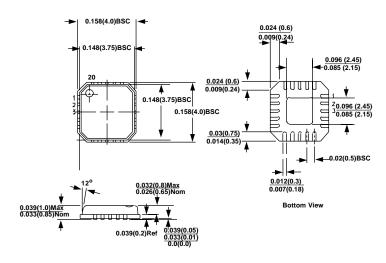



Figure 9. Bandwidth

CHANNEL-TO-CHANNEL CROSSTALK = 20 \times LOG $|V_S/V_{OUT}|$

Test Circuit 8. Channel-to-Channel Crosstalk


REV. PrB __9_

ADG781/ADG782/ADG783

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

20-Lead Chip Scale (CP-20)

-10- REV. PrB