

CMOS 3 V/5 V, Wide Bandwidth Quad 2:1 Mux in Chip Scale

Preliminary Technical Data

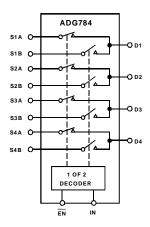
ADG784

FEATURES

Low Insertion Loss and On Resistance: 4 Ω Typical On-Resistance Flatness <2 Ω Bandwidth >200 MHz Single 3 V/5 V Supply Operation Rail-to-Rail Operation Very Low Distortion: <1% Low Quiescent Supply Current (100 nA Typical) Fast Switching Times t_{ON} 10 ns t_{OFF} 4 ns TTL/CMOS Compatible

APPLICATIONS
10/100 Base-TX/T4
100VG-AnyLAN
Token Ring 4 Mbps/16 Mbps
ATM25/155
NIC Adapter and Hubs
Audio and Video Switching
Relay Replacement

GENERAL DESCRIPTION


The ADG784 is a monolithic CMOS device comprising four 2:1 multiplexer/demultiplexers with high impedance outputs. The CMOS process provides low power dissipation yet gives high switching speed and low on resistance. The on-resistance variation is typically less than 0.5 Ω with an input signal ranging from 0 V to 5 V.

The bandwidth of the ADG784 is greater than 200 MHz and this, coupled with low distortion (typically 0.5%), makes the part suitable for switching fast ethernet signals.

The on-resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals. Fast switching speed, coupled with high signal bandwidth, also makes the parts suitable for video signal switching. CMOS construction ensures ultralow power dissipation making the parts ideally suited for portable and battery powered instruments.

The ADG784 operates from a single 3.3~V/5~V supply and is TTL logic compatible. The control logic for each switch is shown in the Truth Table.

FUNCTIONAL BLOCK DIAGRAM

These switches conduct equally well in both directions when ON, and have an input signal range that extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. The ADG784 switches exhibit break-before-make switching action.

PRODUCT HIGHLIGHTS

- 1. Wide bandwidth data rates >200 MHz.
- 2. Ultralow Power Dissipation.
- 3. Extended Signal Range.
 The ADG784 is fabricated on a CMOS process giving an increased signal range that fully extends to the supply rails.
- 4. Low leakage over temperature.
- Break-Before-Make Switching.
 This prevents channel shorting when the switches are configured as a multiplexer.
- 6. Crosstalk is typically -70 dB @ 30 MHz.
- 7. Off isolation is typically -60 dB @ 10 MHz.
- 8. Available in Chip Sclae Package.

REV. PrB September 2000

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc.,2001

PRELIMINARY TECHNICAL DATA

ADG784-SPECIFICATIONS

SINGLE SUPPLY ($V_{DD} = +5 \text{ V} \pm 10\%$, GND = 0 V. All specifications T_{MIN} to T_{MAX} unless otherwise noted.)

Parameter ANALOG SWITCH Analog Signal Range On Resistance (R _{ON}) On Resistance Match Between	+ 25°C	T _{MIN} to T _{MAX}	Units	Test Conditions/Comments
Analog Signal Range On Resistance (R_{ON})	2.2			
On Resistance (R _{ON})	2.2			
On Resistance (R _{ON})	2.2	$0 \text{ V to V}_{\mathrm{DD}}$	V	
On Posistanco Matah Patusan	~.~		Ω typ	$V_D = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
On Decictoree Motob Detrucen		5	Ωmax	
On Resistance Match Detween				
Channels (ΔR_{ON})	0.15		Ω typ	$V_D = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$
		0.5	Ω max	
On Resistance Flatness (R _{FLAT(ON)})	0.5		Ω typ	$V_D = 0 \text{ V to } V_{DD}; I_S = -1 \text{ mA}$
		1	Ω max	
LEAKAGE CURRENTS				
Source OFF Leakage I _S (OFF)	±0.01	±0.05	nA typ	$V_D = 4.5 \text{ V}, V_S = 1 \text{ V}; V_D = 1 \text{ V}, V_S = 4.5 \text{ V};$
8 3 ()	±10	±20	nA max	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±0.01	± 0.05	nA typ	$V_D = 4.5 \text{ V}, V_S = 1 \text{ V}; V_D = 1 \text{ V}, V_S = 4.5 \text{ V};$
0 2 ()	±10	±20	nA max	Test Circuit 2
Channel ON Leakage I _D , I _S (ON)	±0.01	± 0.05	nA typ	$V_D = V_S = 4.5 \text{ V}; V_D = V_S = 1 \text{ V}; \text{ Test Circuit}$
-	±10	±20	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current		0.0	V IIIux	
I _{INL} or I _{INH}	0.001		μA typ	$V_{IN} = V_{INI}$ or V_{INH}
IVE IVII		± 0.5	μA max	IN INE INI
DYNAMIC CHARACTERISTICS ²				
t_{ON}		10	ns typ	$R_L = 100 \Omega, C_L = 35 pF,$
		20	ns max	$V_S = +3 \text{ V}$; Test Circuit 4
$t_{ m OFF}$		4	ns typ	$R_{L} = 100 \Omega, C_{L} = 35 pF,$
		8	ns max	$V_S = +3 \text{ V}$; Test Circuit 4
Break-Before-Make Time Delay, t _D		5	ns typ	$R_L = 100 \Omega, C_L = 35 pF,$
•		1	ns min	$V_{S1} = V_{S2} = +5 \text{ V}$; Test Circuit 5
Off Isolation		-65	dB typ	$R_L = 100 \Omega$, $f = 10 MHz$; Test Circuit 7
Channel-to-Channel Crosstalk		-75	dB typ	$R_L = 100 \Omega$, $f = 10 MHz$; Test Circuit 8
Bandwidth –3 dB		240	MHz typ	R_L = 100 Ω; Test Circuit 6
Distortion		0.5	% typ	$R_L = 100 \acute{y}$
Charge Injection		10	pC typ	$C_L = 1 \text{ nF}$; Test Circuit 9
C_{S} (OFF)		10	pF typ	f = 1 kHz
C_D (OFF)		20	pF typ	f = 1 kHz
C_D , C_S (ON)		30	pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{\rm DD}$ = +5.5 V Digital Inputs = 0 V or $V_{\rm DD}$
I_{DD}		1	μA max	0 ·· 1 ··· 1 · · · · · · · · · · · · · ·
טט	0.001	-	μA typ	
I_{IN}		1	μA typ	$V_{IN} = +5 \text{ V}$
I _O		100	mA max	$V_S/V_D = 0 V$

Specifications subject to change without notice.

-2-REV. PrB

NOTES

¹Temperature ranges are as follows: B Version, -40°C to +85°C.

²Guaranteed by design, not subject to production test.

SINGLE SUPPLY ($V_{DD} = +3 \text{ V } 6 \text{ 10\%}$, GND = 0 V. All specifications T_{MIN} to T_{MAX} unless otherwise noted.)

B Version					
Parameter	T_{MIN} to +25°C T_{MAX}		Units	Test Conditions/Comments	
	120 C	- MAX	Cints	rest conditions/comments	
Analog Switch		0 V to V _{DD}	V		
Analog Signal Range On Resistance (R _{ON})	4	U V IU V _{DD}	-	$V_D = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$	
On resistance (R _{ON})	4	8	Ω typ Ωmax	$\mathbf{v}_{\mathrm{D}} = \mathbf{o} \ \mathbf{v} \ \text{to} \ \mathbf{v}_{\mathrm{DD}}, \ \mathbf{i}_{\mathrm{S}} = -10 \ \mathrm{mA}$	
On Resistance Match Between		· ·			
Channels (ΔR_{ON})	0.15		Ω typ	$V_D = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$	
, G.D		0.5	Ω max	2 22 3	
On Resistance Flatness (R _{FLAT(ON)})	2		Ω typ	$V_D = 0 \text{ V to } V_{DD}, I_S = -10 \text{ mA}$	
		4	Ω max		
LEAKAGE CURRENTS					
Source OFF Leakage I _S (OFF)	±0.01	± 0.05	nA typ	$V_D = 3 \text{ V}, V_S = 1 \text{ V}; V_D = 1 \text{ V}, V_S = 3 \text{ V};$	
8 5 . ,	±10	±20	nA max	Test Circuit 2	
Drain OFF Leakage I _D (OFF)	±0.01	± 0.05	nA typ	$V_D = 3 \text{ V}, V_S = 1 \text{ V}; V_D = 1 \text{ V}, V_S = 3 \text{ V};$	
_	±10	±20	nA max	Test Circuit 2	
Channel ON Leakage I _D , I _S (ON)	±0.01	± 0.05	nA typ	$V_D = V_S = 3 \text{ V}; V_D = V_S = 1 \text{ V}; \text{ Test Circuit } 3$	
	±10	±20	nA max		
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.0	V min		
Input Low Voltage, V _{INL}		0.4	V max		
Input Current					
I _{INL} or I _{INH}	0.001		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
		± 0.5	μA max		
DYNAMIC CHARACTERISTICS ²					
t_{ON}		12	ns typ	$R_L = 100 \Omega, C_L = 35 pF,$	
		25	ns max	$V_S = +1.5 \text{ V}$; Test Circuit 4	
$t_{ m OFF}$		5	ns typ	$R_L = 100 \Omega, C_L = 35 pF,$	
		10	ns max	$V_S = +1.5 \text{ V}$; Test Circuit 4	
Break-Before-Make Time Delay, t _D		5	ns typ	$R_L = 100 \Omega, C_L = 35 pF,$	
		1	ns min	$V_{S1} = V_{S2} = 3 \text{ V}$; Test Circuit 5	
Off Isolation		-65	dB typ	$R_L = 50 \Omega$, $f = 10 MHz$; Test Circuit 7	
Channel-to-Channel Crosstalk		-75	dB typ	$R_L = 50 \Omega$, $f = 10 MHz$; Test Circuit 8	
Bandwidth –3 dB		240	MHz typ	$R_L = 50 \Omega$; Test Circuit 6	
Distortion		2	% typ	$R_{L} = 50 \acute{y}$	
Charge Injection		3	pC typ	$C_L = 1 \text{ nF}$; Test Circuit 9	
$C_{\rm S}$ (OFF)		10	pF typ	f = 1 kHz	
$C_{\rm D}$ (OFF)		20	pF typ	f = 1 kHz f = 1 MHz	
C_D , C_S (ON)		30	pF typ		
POWER REQUIREMENTS				$V_{DD} = +3.3 \text{ V}$	
.		4		Digital Inputs = 0 V or V_{DD}	
I_{DD}	0.004	1	μA max		
т	0.001	1	μA typ	W .OW	
$I_{ m IN}$		1	μA typ	$V_{IN} = +3 V$	
I_{O}		100	mA max	$V_S/V_D = 0 V$	

NOTES

Specifications subject to change without notice.

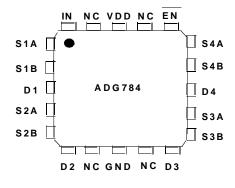
Table I. Truth Table

EN	IN	D1	D2	D3	D4	Function
1	X	Hi-Z	Hi-Z	Hi-Z	Hi-Z	DISABLE
0	0	S1A	S2A	S3A	S4A	IN = 0
0	1	S1B	S2B	S3B	S4B	IN = 1

REV. PrB -3-

 $^{^1\}mathrm{Temperature}$ ranges are as follows: B Version, -40°C to +85°C. $^2\mathrm{Guaranteed}$ by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS1


$(T_A = +25^{\circ}C \text{ unless otherwise noted})$
V_{DD} to GND0.3 V to +6 V
Analog, Digital Inputs ² -0.3 V to $V_{DD} + 0.3 \text{ V}$ or
30 mA, Whichever Occurs First
Continuous Current, S or D
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle max)
Operating Temperature Range
Industrial (B Version)40°C to +85°C
Storage Temperature Range65°C to +150°C
Junction Temperature +150°C
Chip Scale Package, Power Dissipation TBD mW
θ_{JA} Thermal Impedance TBD°C/W
Lead Temperature, Soldering
Vapor Phase (60 sec) +215°C
Infrared (15 sec) +220°C
ESD 2 kV

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

PIN CONFIGURATION Exposed Pad tied to Substrate, GND

TERMINOLOGY

TERMINOLOGI						
$\overline{ m V_{DD}}$	Most Positive Power Supply Potential.					
GND	Ground (0 V) Reference.					
S	Source Terminal. May be an input or output.					
D	Drain Terminal. May be an input or output.					
IN	Logic Control Input.					
E N	Logic Control Input.					
R_{ON}	Ohmic resistance between D and S.					
ΔR_{ON}	On Resistance match between any two channels					
	i.e., R _{ON} max – R _{ON} min.					
$R_{FLAT(ON)}$	Flatness is defined as the difference between the					
	maximum and minimum value of on resistance					
	as measured over the specified analog signal range.					
I _S (OFF)	Source Leakage Current with the switch "OFF."					
I _D (OFF)	Drain Leakage Current with the switch "OFF."					
I_D , I_S (ON)	Channel Leakage Current with the switch "ON."					
$V_D(V_S)$	Analog Voltage on Terminals D, S.					
C _S (OFF)	"OFF" Switch Source Capacitance.					
C _D (OFF)	"OFF" Switch Drain Capacitance.					
C_D , C_S (ON)	"ON" Switch Capacitance.					
t_{ON}	Delay between applying the digital control input and the output switching on. See Test Circuit 4.					
t_{OFF}	Delay between applying the digital control input and the output switching Off.					
t_D	"OFF" time or "ON" time measured between					
_	the 90% points of both switches, when switching					
	from one address state to another. See Test					
G . 11	Circuit 5.					
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result					
	of parasitic capacitance.					
Off Isolation	A measure of unwanted signal coupling through an					
011 1001011011	"OFF" switch.					
Bandwidth	Frequency response of the switch in the ON					
	state measured at 3 dB down.					
Distortion	$R_{\rm FLAT(ON)}/R_{\rm L}$					

ORDERING GUIDE

Model	Temperature Range	Package Descriptions	Package Options
ADG784BCP	−40°C to +85°C	Chip Scale Package	CP-20

CAUTION -

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG784 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

-4- REV. PrB

Typical Performance Characteristics—ADG784

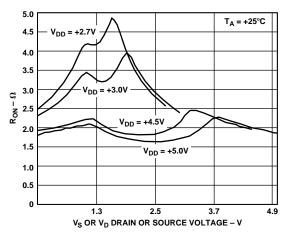


Figure 1. On Resistance as a Function of V_D (V_S) for Various Single Supplies

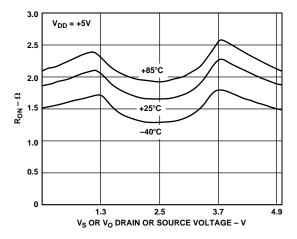


Figure 2. On Resistance as a Function of V_D (V_S) for Different Temperatures with 5 V Single Supplies

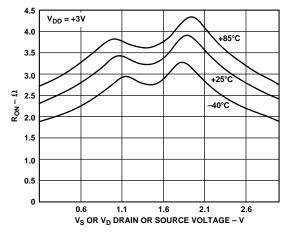


Figure 3. On Resistance as a Function of V_D (V_S) for Different Temperatures with 3 V Single Supplies

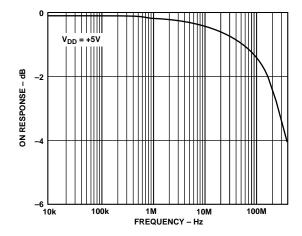


Figure 4. On Response vs. Frequency

Figure 5. Off Isolation vs. Frequency

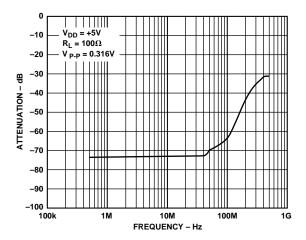


Figure 6. Crosstalk vs. Frequency

REV. PrB –5–

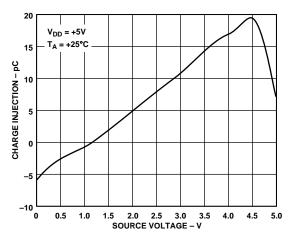


Figure 7. Charge Injection vs. Source Voltage

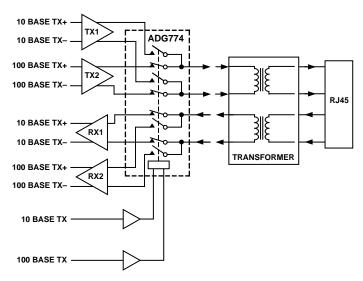


Figure 8. Full Duplex Transceiver

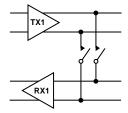
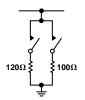
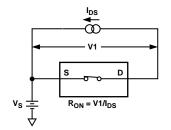
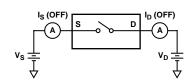


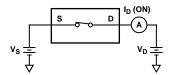
Figure 9. Loop Back

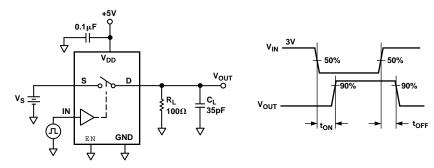


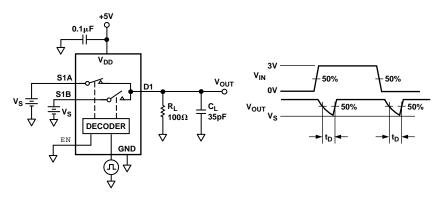

Figure 10. Line Termination

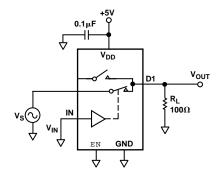

Figure 11. Line Clamp

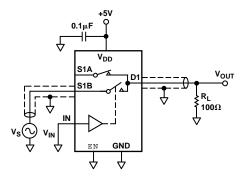
-6- REV. PrB


Test Circuits

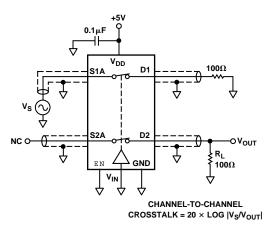

Test Circuit 1. On Resistance


Test Circuit 2. Off Leakage

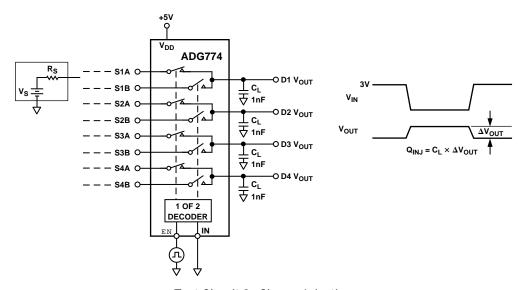

Test Circuit 3. On Leakage


Test Circuit 4. Switching Times

Test Circuit 5. Break-Before-Make Time Delay



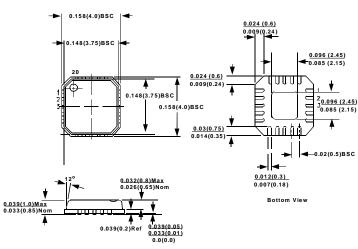
Test Circuit 6. Bandwidth



Test Circuit 7. Off Isolation

REV. PrB -7-

Test Circuit 8. Channel-to-Channel Crosstalk



Test Circuit 9. Charge Injection

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

20-Lead CSP (CP-20)

