See NS Package Number M14A or N14A

[^0]- Active filters

General Description

A versatile family of monolithic JFET analog switches economically fulfills a wide variety of multiplexing and analog switching applications.
Even numbered switches may be driven directly from standard 5V logic, whereas the odd numbered switches are intended for applications utilizing 10 V or 15 V logic. The monolithic construction guarantees tight resistance match and track.

For voltage switching applications see LF13331, LF13332, and LF13333 Analog Switch Family, or the CMOS Analog Switch Family.

Applications

- A/D and D/A converters
- Micropower converters
- Industrial controllers
- Position controllers
- Data acquisition
- Signal multiplexers/demultiplexers
- Multiple channel AGC
- Quad compressors/expanders
- Choppers/demodulators
- Programmable gain amplifiers
- High impedance voltage buffer
- Sample and hold

Features

- Interfaces with standard TTL and CMOS

■ "ON" resistance match
2Ω
■ Low "ON" resistance
100Ω

- Very low leakage

50 pA

- Large analog signal range $\pm 10 \mathrm{~V}$ peak
- High switching speed

150 ns

- Excellent isolation between channels

80 dB
at 1 kHz

Connection and Schematic Diagrams

AH5010C MUX Switches
(4-Channel Version Shown) Order Number AH5010CN
Dual-In-Line Package

TOP VIEW

LOGIC DRIVE	4 CHANNEL MUX	4 SPST SWITCHES
5V LOGIC 15V LOGIC	AH5010C	AH5012C
AH5011C		

"' input)
Dual-In-Line Package

AH5011C and AH5012C SPST Switches
(Quad Version Shown)
Order Number AH5011CN, AH5012CM or AH5012CN
See NS Package Number M16A or N16A

uncommitted drains TL/H/5659-1

1995 National Semiconductor Corporation TL/H/5659

Absolute Maximum Ratings (Note 1)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Input Voltage

AH5010/AH5011/AH5012	30 V
Positive Analog Signal Voltage	30 V
Negative Analog Signal Voltage	-15 V
Diode Current	10 mA

Drain Current	30 mA
Soldering Information:	
N Package 10 sec	$300^{\circ} \mathrm{C}$
SO Package Vapor Phase (60 sec.)	$215^{\circ} \mathrm{C}$
Infrared (15 sec.)	

Electrical Characteristics AH5010 and AH5012 (Notes 2 and 3)

Symbol	Parameter	Conditions	Typ	Max	Units
IGSX	Input Current "OFF"	$\begin{aligned} & 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{GD}} \leq 11 \mathrm{~V}, \mathrm{~V}_{\mathrm{SD}}=0.7 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.01	$\begin{aligned} & 0.2 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$I_{\text {d (OFF }}$	Leakage Current "OFF"	$\begin{aligned} & \mathrm{V}_{\mathrm{SD}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=3.8 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.02	$\begin{aligned} & 0.2 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current 'ON"	$\begin{aligned} & \mathrm{V}_{\mathrm{GD}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.08	$\begin{gathered} 1 \\ 200 \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & \mathrm{V}_{\mathrm{GD}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.13	$\begin{gathered} \hline 5 \\ 10 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current 'ON"	$\begin{aligned} & \mathrm{V}_{\mathrm{GD}}=0 \mathrm{~V}, \mathrm{IS}=-2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.1	$\begin{aligned} & 10 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{r}_{\mathrm{DS}}(\mathrm{ON})$	Drain-Source Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=0.35 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	90	$\begin{aligned} & 150 \\ & 240 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
$\mathrm{V}_{\text {DIODE }}$	Forward Diode Drop	$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$		0.8	V
$\mathrm{r}_{\text {DS(ON) }}$	Match	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	4	20	Ω
TON	Turn "ON" Time	See AC Test Circuit	150	500	ns
TOFF	Turn "OFF" Time	See AC Test Circuit	300	500	ns
CT	Cross Talk	See AC Test Circuit	120		dB

Electrical Characteristics AH5011 (Notes 2 and 3)

Symbol	Parameter	Conditions	Typ	Max	Units
IGSX	Input Current "OFF"	$\begin{aligned} & 11 \mathrm{~V} \leq \mathrm{V}_{\mathrm{GD}} \leq 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{SD}}=0.7 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.01	$\begin{aligned} & 0.2 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{I}_{\text {D(OFF) }}$	Leakage Current "OFF"	$\begin{aligned} & \mathrm{V}_{\mathrm{SD}}=0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10.3 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.01	$\begin{aligned} & 0.2 \\ & 10 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & \mathrm{V}_{\mathrm{GD}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	0.04	$\begin{aligned} & 0.5 \\ & 100 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & \mathrm{V}_{\mathrm{GD}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \end{aligned}$
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	Leakage Current "ON"	$\begin{aligned} & \mathrm{V}_{\mathrm{GD}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 5 \\ & 2 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$
r ${ }_{\text {DS }}(\mathrm{ON})$	Drain-Source Resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{GS}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~mA} \\ & \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$	60	$\begin{aligned} & 100 \\ & 160 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
V ${ }_{\text {diode }}$	Forward Diode Drop	$\mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~mA}$		0.8	V
$\mathrm{r}_{\mathrm{DS}(\mathrm{ON})}$	Match	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$	2	10	Ω
TON	Turn "ON" Time	See AC Test Circuit	150	50	ns
TOFF	Turn "OFF" Time	See AC Test Circuit	300	500	ns
CT	Cross Talk	See AC Test Circuit. f = 100 Hz .	120		dB

Note 1: Absolute maximum ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.
Note 2: Test conditions $25^{\circ} \mathrm{C}$ unless otherwise noted.
Note 3: "OFF" and "ON" notation refers to the conduction state of the FET switch.
Note 4: Thermal Resistance:

	$\theta_{\text {JA }}$
N14A, N16A	$92^{\circ} \mathrm{C} / \mathrm{W}$
M14A, M16A	$115^{\circ} \mathrm{C} / \mathrm{W}$

Typical Performance Characteristics

Applications Information

Theory of Operation

The AH series of analog switches are primarily intended for operation in current mode switch applications; i.e., the drains of the FET switch are held at or near ground by operating into the summing junction of an operational amplifier. Limiting the drain voltage to under a few hundred millivolts eliminates the need for a special gate driver, allowing the switches to be driven directly by standard TTL, 5V-10V CMOS, open collector 15 V TTL/CMOS.
Two basic switch configurations are available: 4 independent switches (SPST) and 4 pole switches used for multiplexing (4 PST-MUX). The MUX versions such as the AH5010 offer common drains and include a series FET operated at $\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}$. The additional FET is placed in the feedback path in order to compensate for the "ON" resistance of the switch FET as shown in Figure 1.
The closed-loop gain of Figure 1 is:

$$
\mathrm{A}_{\mathrm{VCL}}=\frac{\mathrm{R} 2+\mathrm{r}_{\mathrm{DS}(\mathrm{ON}) \mathrm{Q} 2}}{\mathrm{R} 1+\mathrm{r}_{\mathrm{DS}(\mathrm{ON}) \mathrm{Q} 1}}
$$

For R1 = R2, gain accuracy is determined by the $r_{\text {DS(ON) }}$ match between Q1 and Q2. Typical match between Q1 and Q2 is 4 ohms resulting in a gain accuracy of 0.05% (for R1 $=R 2=10 \mathrm{k} \Omega$).

Noise Immunity

The switches with the source diodes grounded exhibit improved noise immunity for positive analog signals in the
"OFF" state. With $\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$ and the $\mathrm{V}_{\mathrm{A}}=10 \mathrm{~V}$, the source of Q1 is clamped to about 0.7 V by the diode $\left(\mathrm{V}_{\mathrm{GS}}=14.3 \mathrm{~V}\right)$ ensuring that ac signals imposed on the 10 V input will not gate the FET "ON."

Selection of Gain Setting Resistors

Since the AH series of analog switches are operated in current mode, it is generally advisable to make the signal current as large as possible. However, current through the FET switch tends to forward bias the source to gate junction and the signal shunting diode resulting in leakage through these junctions. As shown in Figure 2, $\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$ represents a finite error in the current reaching the summing junction of the op amp.
Secondly, the ridS(ON) of the FET begins to "round" as IS approaches $I_{\text {DSS }}$. A practical rule of thumb is to maintain I_{S} at less than $1 / 10$ of $I_{\text {DSS }}$.
Combining the criteria from the above discussion yields:

$$
\begin{equation*}
\mathrm{R} 1_{\text {min }} \geq \frac{\mathrm{V}_{\mathrm{A}(\mathrm{MAX})} \mathrm{A}_{\mathrm{D}}}{\mathrm{I}_{\mathrm{G}(\mathrm{ON})}} \tag{2a}
\end{equation*}
$$

or:

$$
\begin{equation*}
\geq \frac{\mathrm{V}_{\mathrm{A}(\mathrm{MAX})}}{\mathrm{I}_{\mathrm{DSS}} / 10} \tag{2b}
\end{equation*}
$$

whichever is larger.

FIGURE 1. Use of Compensation FET

FIGURE 2. On Leakage Current, $\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$

Applications Information (Continued)

Where:

$\mathrm{V}_{\mathrm{A}(\mathrm{MAX})}=$	Peak amplitude of the analog
	input signal
	$=$ Desired accuracy
A_{D}	$=$ Leakage at a given IS
$\mathrm{I}_{\mathrm{G}(\mathrm{ON})}$	$=$ Saturation current of the FET
$\mathrm{I}_{\mathrm{DSS}}$	$=$
	switch
	$\cong 20 \mathrm{~mA}$

In a typical application, V_{A} might $= \pm 10 \mathrm{~V}, \mathrm{~A}_{\mathrm{D}}=0.1 \%$, $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$. The criterion of equation (2b) predicts:
$R 1_{(\mathrm{MIN})} \geq \frac{(10 \mathrm{~V})}{\left(\frac{20 \mathrm{~mA}}{10}\right)}=5 \mathrm{k} \Omega$
For $\mathrm{R} 1=5 \mathrm{k}, \mathrm{I}_{\mathrm{S}} \cong 10 \mathrm{~V} / 5 \mathrm{k}$ or 2 mA . The electrical characteristics guarantee an $\mathrm{I}_{\mathrm{G}(\mathrm{ON})} \leq 1 \mu \mathrm{~A}$ at $85^{\circ} \mathrm{C}$ for the AH 5010 . Per the criterion of equation (2a):

$$
\mathrm{R} 1_{(\mathrm{MIN})} \geq \frac{(10 \mathrm{~V})\left(10^{-3}\right)}{1 \times 10^{-6}} \geq 10 \mathrm{k} \Omega
$$

Since equation (2a) predicts a higher value, the 10 k resistor should be used.
The "OFF" condition of the FET also affects gain accuracy. As shown in Figure 3, the leakage across Q2, $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})}$ represents a finite error in the current arriving at the summing junction of the op amp.

Accordingly:

$$
R 1_{(\mathrm{MAX})} \leq \frac{\mathrm{V}_{\mathrm{A}(\mathrm{MIN})} \mathrm{A}_{\mathrm{D}}}{(\mathrm{~N}) \mathrm{I}_{\mathrm{D}(\mathrm{OFF})}}
$$

Where: $\mathrm{V}_{\mathrm{A}(\mathrm{MIN})}=$ Minimum value of the analog input signal

$$
A_{D} \quad=\text { Desired accuracy }
$$

$$
\mathrm{N} \quad=\text { Number of channels }
$$

$$
I_{D(O F F)}=\text { "OFF" leakage of a given FET }
$$ switch

As an example, if $\mathrm{N}=10, \mathrm{~A}_{\mathrm{D}}=0.1 \%$, and $\mathrm{I}_{\mathrm{D}(\mathrm{OFF})} \leq 10 \mathrm{nA}$ at $85^{\circ} \mathrm{C}$ for the AH5010. R1 (MAX) is:

$$
R 1_{(\operatorname{MAX})} \leq \frac{(1 \mathrm{~V})\left(10^{-3}\right)}{(10)\left(10 \times 10^{-9}\right)}=10 \mathrm{k}
$$

Selection of R2, of course, depends on the gain desired and for unity gain R1=R2.
Lastly, the foregoing discussion has ignored resistor tolerances, input bias current and offset voltage of the op ampall of which should be considered in setting the overall gain accuracy of the circuit.

TTL Compatibility

The AH series can be driven with two different logic voltage swings: the even numbered part types are specified to be driven from standard 5V TTL logic and the odd numbered types from 15 V open collector TTL.

FIGURE 3

Applications Information (Continued)

Standard TTL gates pull-up to about 3.5V (no load). In order to ensure turn-off of the even numbered switches such as AH5010, a pull-up resistor, $\mathrm{R}_{\mathrm{EXT}}$, of at least $10 \mathrm{k} \Omega$ should be placed between the $5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$ and the gate output as shown in Figure 4.

Likewise, the open-collector, high voltage TTL outputs should use a pull-up resistor as shown in Figure 5. In
both cases, $t_{\text {(OFF) }}$ is improved for lower values of $\mathrm{R}_{\text {EXT }}$ at the expense of power dissipation in the low state.

Definition of Terms
The terms referred to in the electrical characteristics tables are as defined in Figure 6.

FIGURE 5. Interfacing with + 15V Open Collector TTL

Typical Applications (Continued)

TL/H/5659-8
8-Bit Binary (BCD) Multiplying D/A Converter*

2 Beckman resistor arrays
Part \#698-1-R 100k B recommended
$R_{f}\left(\overline{\mathrm{G} 1} \mathrm{I}_{1}+\overline{\mathrm{G} 2} \mathrm{I}_{2}+\overline{\mathrm{G} 3} \mathrm{I}_{3}+\overline{\mathrm{G} 4} \mathrm{I}_{4}+\right.$
$\frac{\overline{\mathrm{G} 5} \mathrm{I}_{5}}{16}+\frac{\overline{\mathrm{G} 6} \mathrm{I}_{6}}{16}+\frac{\overline{\mathrm{G} 7} \mathrm{I}_{7}}{16}+\frac{\overline{\mathrm{G} 8} \mathrm{I}_{8}}{16}$
Note: The switch is "ON" when G is at OV (Logic " 0 ")
$I=\frac{V_{R}}{R}$

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

Dual-In-Line Package (N)
Niba (REVE Order Number AH5011CN or AH5012CN

NS Package Number N16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge @tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 8585 English Tel: $(+49)$ 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

[^0]: Note: All diode cathodes are internally connected to the substrate.

