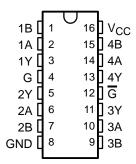
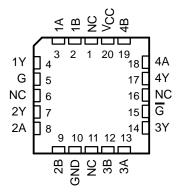
AM26LS32AC, AM26LS33AC, AM26LS32AM, AM26LS33AM QUADRUPLE DIFFERENTIAL LINE RECEIVERS

SLLS115B - OCTOBER 1980 - REVISED MAY 1995

- AM26LS32A Meets or Exceeds the Requirements of ANSI EIA/TIA-422-B, EIA/TIA-423-B, and ITU Recommendations V.10 and V.11
- AM26LS32A Has ±7-V Common-Mode Range With ±200-mV Sensitivity
- AM26LS32A Has ±15-V Common-Mode Range With ±500-mV Sensitivity
- Input Hysteresis . . . 50 mV Typical
- Operates From a Single 5-V Supply
- Low-Power Schottky Circuitry
- 3-State Outputs
- Complementary Output Enable Inputs
- Input Impedance . . . 12 kΩ Min
- Designed to Be Interchangeable With Advanced Micro Devices AM26LS32[™] and AM26LS33[™]


description

The AM26LS32A and AM26LS33A are quadruple differential line receivers for balanced and unbalanced digital data transmission. The enable function is common to all four receivers and offers a choice of active-high or active-low input. The 3-state outputs permit connection direct to a busorganized system. Fail-safe design ensures that if the inputs are open, the outputs will always be high.


Compared to the AM26LS32 and the AM26LS33, the AM26LS32A and AM26LS33A incorporate an additional stage of amplification to improve sensitivity. The input impedance has been increased resulting in less loading of the bus line. The additional stage has increased propagation delay; however, this will not affect interchangeability in most applications.

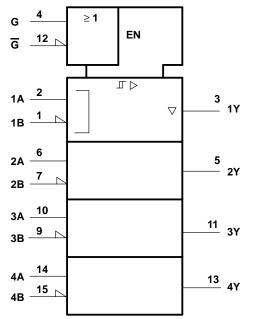
The AM26LS32AC and AM26LS33AC are characterized for operation from 0°C to 70°C. The AM26LS32AM and AM26LS33AM are characterized for operation over the full military temperature range of –55°C to 125°C.

AM26LS32AC, AM26LS33AC...D OR N PACKAGE AM26LS32AM, AM26LS33AM...J PACKAGE (TOP VIEW)

AM26LS32AM, AM26LS33AM . . . FK PACKAGE (TOP VIEW)

NC-No internal connection

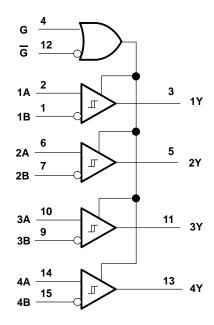
FUNCTION TABLE (each receiver)

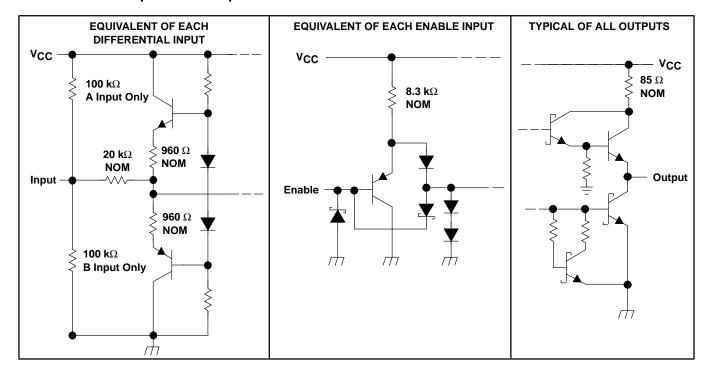

DIFFERENTIAL	ENABLES		OUTPUT		
A – B	G	O	Υ		
\/ > \/	Н	Χ	Н		
V _{ID} ≥ V _{IT+}	Х	L	Н		
$V_{IT} \leq V_{ID} \leq V_{IT}$	Н	Χ	?		
VII = > VID > VII+	Х	L	?		
\/\- < \/\-	Н	Χ	L		
V _{ID} ≤ V _{IT} _	Х	L	L		
X	Ĺ	Η	Z		
	Н	Х	Н		
Open	Х	L	Н		

H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

AM26LS32 and AM26LS33 are trademarks of Advanced Mircro Devices, Inc.

<u>SLLS115B – OCTOBER 1980 – REVISED MAY 1995</u>


logic symbol†


[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, and N packages.

logic diagram (positive logic)

schematics of inputs and outputs

AM26LS32AC, AM26LS33AC, AM26LS32AM, AM26LS33AM QUADRUPLE DIFFERENTIAL LINE RECEIVERS

SLLS115B - OCTOBER 1980 - REVISED MAY 1995

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

	AM26LS32AC AM26LS33AC	AM26LS32AM AM26LS33AM	UNIT		
Supply voltage, V _{CC} (see Note 1)	7	7	V		
Input voltage V	Any differential input	±25	±25	V	
Input voltage, V _I	Other inputs	7	7]	
Differential input voltage, V _{ID} (see Note 2)	±25	±25	V		
Continuous total power dissipation	See Dissipation Rating Table				
Operating free-air temperature range, T _A		0 to 70	-55 to 125	°C	
Storage temperature range, T _{Stq}		-65 to 150	-65 to 150	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	D or N package	260		°C	
Case temperature for 60 seconds, T _C	FK package		260	°C	
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds	J package	300	300	°C	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. Differential voltage values are at the noninverting (A) input terminals with respect to the inverting (B) input terminals.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{A}} \le 25^{\circ}\mbox{C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 125°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	_
FK	1375 mW	11.0 mW/°C	880 mW	275 mW
J	1375 mW	11.0 mW/°C	880 mW	275 mW
N	1150 mW	9.2 mW/°C	736 mW	_

recommended operating conditions

		1	AM26LS32AC AM26LS33AC			AM26LS32AM AM26LS33AM			
		MIN	NOM	MAX	MIN	NOM	MAX		
Supply voltage, V _{CC}		4.75	5	5.25	4.5	5	5.5	V	
High-level input voltage, V _{IH}		2			2			V	
Low-level input voltage, V _{IL}				0.8			0.8	V	
Common-mode input voltage, V _{IC}	AM26LS32AC, AM26LS32AM			±7			±7	٧	
	AM26LS33AC, AM26LS33AM			±15			±15		
High-level output current, IOH				-440			-440	μΑ	
Low-level output current, IOL				8			8	mA	
Operating free-air temperature, T _A		0		70	-55		125	°C	

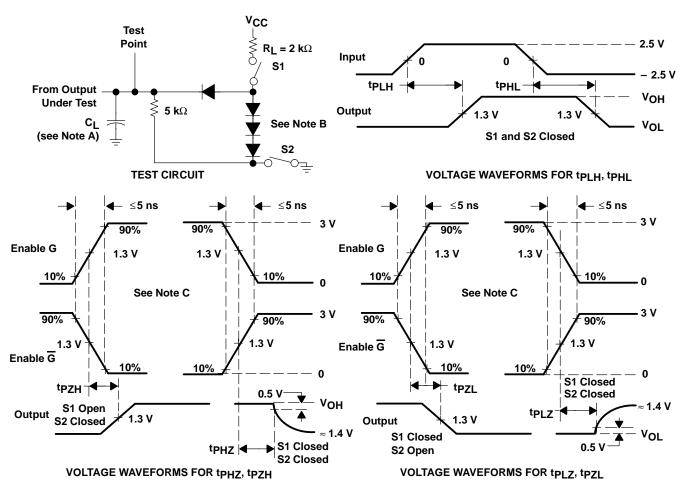
NOTES: 1. All voltage values, except differential voltages, are with respect to the network ground terminal.

AM26LS32AC, AM26LS33AC, AM26LS32AM, AM26LS33AM **QUADRUPLE DIFFERENTIAL LINE RECEIVERS**

SLLS115B - OCTOBER 1980 - REVISED MAY 1995

electrical characteristics over recommended ranges of $V_{CC},\ V_{IC},$ and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN	TYP†	MAX	UNIT
V	V_{IT} + Positive-going input threshold $V_{O} = V_{OH}$ min, $I_{OH} = -440 \mu$ A		AM26LS32A			0.2	V	
^v +	voltage	vO = vOHmin,	ΙΟΗ = -440 μΑ	AM26LS33A			0.5	V
VIT-	Negative-going input threshhold	$V_0 = 0.45 \text{ V}$. $I_{01} = 8 \text{ mA}$		AM26LS32A	-0.2‡			V
VII —	voltage			AM26LS33A	-0.5‡			V
V _{hys}	Hysteresis voltage (V _{IT+} - V _{IT-})					50		mV
VIK	Enable input clamp voltage	$V_{CC} = MIN,$	$I_1 = -18 \text{ mA}$				-1.5	V
V	I lieb level eviteraturaltana	V _{CC} = MIN,	V _{ID} = 1 V,	'32AC, '33AC	2.7			V
VOH	MA HIGH-level outbut voltage I.,		'32AM, '33AM	2.5			V	
V-0.	Low-level output voltage	$V_{CC} = MIN,$ $V_{I(G)} = 0.8 V$	$V_{ID} = -1 V$,	$I_{OL} = 4 \text{ mA}$			0.4	V
VOL				$I_{OL} = 8 \text{ mA}$			0.45	V
loz	Off-state (high-impedance-state)		C = MAX				20	μA
102	output current	VCC = MAX		V _O = 0.4 V			-20	μΑ
11	Line input current	$V_{I} = 15 V$,	Other input at -	10 V to 15 V			1.2	mA
'1	Line input current	$V_{I} = -15 V$,	Other input at -	15 V to 10 V			-1.7	ША
I _I (EN)	Enable input current	V _I = 5.5 V	V _I = 5.5 V				100	μΑ
lн	High-level enable current	V _I = 2.7 V					20	μΑ
IլL	Low-level enable current	V _I = 0.4 V					-0.36	mA
rĮ	Input resistance	$V_{IC} = -15 \text{ V}$ to 15 V, One input to ac ground			12	15		kΩ
los	Short-circuit output current§	$V_{CC} = MAX$			-15		-85	mA
ICC	Supply current	V _{CC} = MAX, All outputs disabled				52	70	mA


switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER		TEST CC	MIN	TYP	MAX	UNIT	
^t PLH	Propagation delay time, low-to-high-level output	C _I = 15 pF,	See Figure 1		20	35	ns
tPHL	Propagation delay time, high-to-low-level output	CL = 15 pr,	See Figure 1		22	35	ns
^t PZH	Output enable time to high level	C: 15 pF	See Figure 1		17	22	ns
tPZL	Output enable time to low level	$C_L = 15 pF$,			20	25	ns
tPHZ	Output disable time from high level	C _L = 5 pF,	See Figure 1		21	30	ns
^t PLZ	Output disable time from low level				30	40	ns

[†] All typical values are at V_{CC} = 5 V, T_A = 25°C, and V_{IC} = 0. ‡ The algebraic convention, in which the less positive (more negative) limit is designated as minimum, is used in this data sheet for threshold levels

[§] Not more than one output should be shorted to ground at a time, and duration of the short circuit should not exceed one second.

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_I includes probe and jig capacitance.

- B. All diodes are 1N3064 or equivalent.
- C. Enable G is tested with \overline{G} high; \overline{G} is tested with G low.

Figure 1

TYPICAL CHARACTERISTICS

VOH - High-Level Output Voltage - V

HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT CURRENT[†] 5 $V_{ID} = 0.2 V$ $T_A = 25^{\circ}C$ VOH - High-Level Output Voltage - V V_{CC} = 5.25 V V_{CC} = 5 V 2 V_{CC} = 5.5 V V_{CC} = 4.75 V 1 V_{CC} = 4.5 V 0 0 -10 - 40 - 50 - 20 -30IOH - High-Level Output Current - mA

 † V_{CC} = 5.5 V and V_{CC} = 4.5 V applies to M-suffix devices only.

Figure 2

LOW-LEVEL OUTPUT VOLTAGE

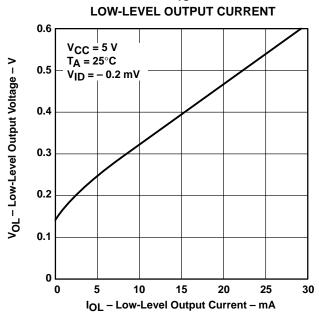


Figure 4

HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

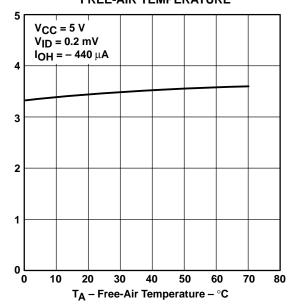


Figure 3

LOW-LEVEL OUTPUT VOLTAGE

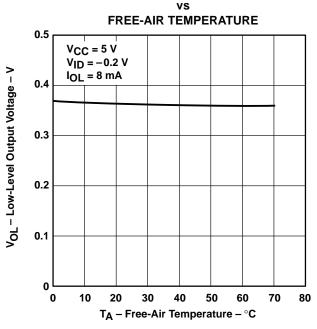
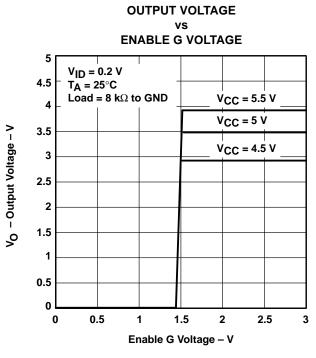
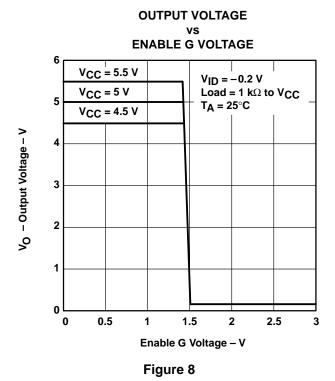
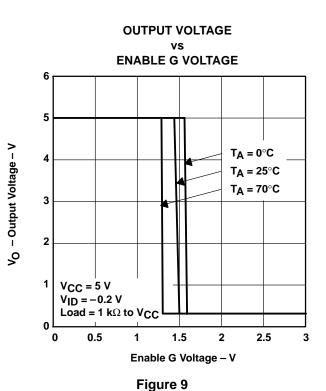



Figure 5

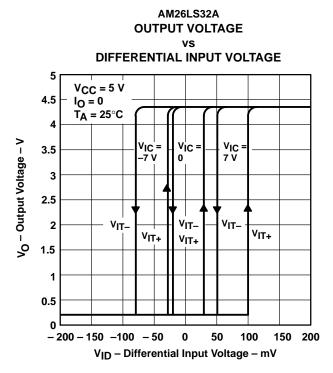
OUTPUT VOLTAGE


TYPICAL CHARACTERISTICS



ENABLE G VOLTAGE 5 $V_{CC} = 5 V$ 4.5 $V_{ID} = 0.2 V$ Load = 8 $k\Omega$ to GND $T_A = 70^{\circ}C$ V_O - Output Voltage - V 3.5 $T_A = 25^{\circ}C$ T_A = 0°C 3 2.5 2 1.5 1 0.5 0 0 0.5 1.5 2 2.5 Enable G Voltage - V

Figure 6


Figure 7

TEXAS INSTRUMENTS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TYPICAL CHARACTERISTICS

DIFFERENTIAL INPUT VOLTAGE $V_{CC} = 5 \text{ V}, I_O = 0, T_A = 25^{\circ}\text{C}$ 4.5 V_O - Output Voltage - V VIC = V_{IC} = 15 V VIC = 3.5 0 3 2.5 2 V_{IT}_ VIT-VIT-۷_{IT±} V_{IT+} ۷_{IT+} 1.5 1 0.5 0 -200 - 150 - 100 - 50 0 50 100 150 200

V_{ID} - Differential Input Voltage - mV

AM26LS33A

OUTPUT VOLTAGE

Figure 10 Figure 11

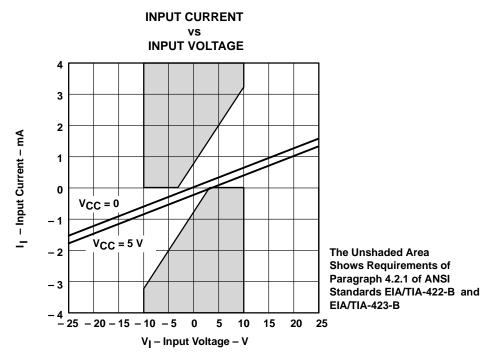
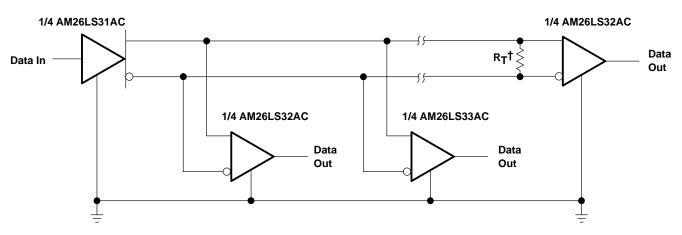



Figure 12

SLLS115B - OCTOBER 1980 - REVISED MAY 1995

APPLICATION INFORMATION

 $[\]dagger$ R_T equals the characteristic impedance of the line.

Figure 13. Circuit With Multiple Receivers

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated