AM6012

12-BIT HIGH SPEED D/A CONVERTERS

- ALL GRADES 12-BIT MONOTONIC OVER TEMPERATURE
- DIFFERENTAL NONLINEARITY TO $\pm 0.012 \%$ (13 BITS) MAX OVER TEMPERATURE (A GRADES)
- 250ns TYPICAL SETTLING TIME
- FULL SCALE CURRENT 4mA
- HIGH SPEED MULTIPLYING CAPABILITY
- TTLCMOS/ECL/HTL COMPATIBLE
- HIGH OUTPUT COMPLIANCE: - 5 V TO + 10V
- COMPLEMENTARY CURRENT OUTPUTS
- LOW POWER CONSUMPTION: 230 mW

DESCRIPTION

T-e AM6012 is an industry standard monolithic T2-bir digital-to analog converter. Complementary carent output and high speed multiplying capabi-
© -ake the AM6012 useful in a wide range of apsili:ations such as video displays, process control sitsily and fast A/D converters. The 6012 is the $s=$ D/A to achieve 12-bit differential linearity withoul the use of thin film resistors or active trim--ng. The 6012's unique circuit design insures -nonotonicity without the precision trimming assocalas with most other 12-bit DAC architectures. Te AM6012 is packaged in a 20-pin plastic DIP ant is SO-20L for surface mounting. Although teand specified at $\pm 15 \mathrm{~V}$, the AM6012 works well Dve a wide range of power supply voltages. Per-la-ance is essentially independent of supply volmage over the range of +5 volts, -12 volts to ± 18 ofls. The AM6012 series guarantees full 12-bit monomenty for all grades and differential nonlineaIy 3 high as 0.012% (13 bits) for the A grades in-c 0.025% (12 bits) for the standard grades over tee entire temperature range.
ミnsanteed monotonicity and low cost make the Anabil 12 an ideal choice for high volume applications sequiring fine local resolution. Typical applisaiers include printer graphics and video displays. -- ese applications need a minimum of 12 bits of tessituon, although conformance to an ideal Hayt line from zero to full scale is less important.

AM6012-AM6012A

ABSOLUTE MAXIMUM RATINGS

Operating Temperature Range	0 to 70	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +125	${ }^{\circ} \mathrm{C}$
Power Supply Voltage	± 18	V
Logic Inputs	-5 to +18	V
Voltage at Current Outputs Pins	-8 to +12	V
Reference Inputs	+VS to $-\mathrm{VEE} \pm 18 \mathrm{~V}$	V
Reference Input Current	max Differential	mA

CONNECTION DIAGRAM AND ORDERING INFORMATION

Type	Differential linearity (\%)	Temperature Range $\left({ }^{\circ} \mathrm{C}\right)$	Package
AM6012PC	0.025	0 to 70	DIP.20
AM6012APC	0.012	0.025	0 to 70
AM6012 D	0.012	SO.20L	
AM6012 AD			

BLOCK DIAGRAM

THERMAL DATA

$R_{\text {thj-amb }}$	Thermal resistance junction-ambient	\max	$100^{\circ} \mathrm{CM}$

ELECTRICAL CHARACTERISTICS

These specifications apply for $\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}, \mathrm{I} R E F=1.0 \mathrm{~mA}$, over the operating temperature -ange unless otherwise specified

Param.	Description		Test Conditions	AM6012A			AM6012			Units	
			Min.	Typ.	Max.	Min.	Typ.	Max.			
	Resolution				12	12	12	12	12	12	Bits
	Monotonicity			12	12	12	12	12	12	Bits	
- NL	Differential Nonlinearity		Deviation from ideal step size	-	-	$\pm .012$	-	-	$\pm .025$	\%FS	
			13	-	-	12	-	-	Bits		
WL	Nonlinearity			Deviation from ideal straight line	-	-	$\pm .05$	-	-	± 0.05	\%FS
-S	Full Scale Current		$\begin{aligned} & V_{R E F}=10.000 \mathrm{~V} \\ & R_{14}=R_{15}=10.000 \mathrm{k} \Omega \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	3.967	3.999	4.031	3.935	3.999	4.063	mA	
Trs	Full Scale Temp.Co.			-	± 5	± 20	-	± 10	± 40	ppm ${ }^{\circ} \mathrm{C}$	
				-	$\pm .0005$	$\pm .002$		$\pm .001$	$\pm .004$	\% $\mathrm{FS}^{\circ} \mathrm{C}$	
${ }^{\circ} \mathrm{Oc}$	Output Voltage Compliance		D.N.L. Specification guaranteed over compliance range ROUT> 10 megohme typ.	-5	-	+10	-5	-	+10	V	
Ess	Full Scale Symmetry		$\mathrm{I}_{\text {FS }}{ }^{-1} \mathrm{FS}$	-	± 0.2	± 1.0	-	± 0.4	± 2.0	$\mu \mathrm{A}$	
S	Zero Scale Current			-	-	0.10	-	-	0.10	$\mu \mathrm{A}$	
5	Setting Time		To $\pm 1 / 2$ LSB, all bits ON or OFF, $T_{A}=25^{\circ} \mathrm{C}$	-	250	500	-	250	500	nSec	
$\begin{aligned} & \mathrm{Hu} \\ & \mathrm{BH} \end{aligned}$	Propagation Delay - all bits		50\% to 50\%	-	25	50	-	25	50	nSec	
Cout	Output Capacitance			-	20	-	-	20	-	pF	
\cdots	Logic Input Levels	Logic '0'		-	-	0.8	-	-	0.8	V	
4 -		Logic "1"		2.0	-	-	2.0	-	-		
-	Logic Input Current		$V_{I N}=-510+18 \mathrm{~V}$	-	-	40	-	-	40	$\mu \mathrm{A}$	
15	Logic Input Swing		$V_{E E}=-15 \mathrm{~V}$	-5	-	$+18$	-5	-	+18	v	
IET0	Reference Current Rango			0.2	1.0	1.1	0.2	1.0	1.1	mA	
-8	Relerence Bias Current			0	-0.5	-2.0	0	-0.5	-2.0	μ	

ELECTRICAL CHARACTERISTICS (Continued)

Param.	Description	Test Conditions	AM6012A			AM6012			Units
			Min.	Typ.	Max.	Min.	Typ.	Max.	
di/dt	Reference Input Slew Rate	$\begin{aligned} & R_{14(\theta q)}=800 \Omega \\ & C C=0 p F \end{aligned}$	4.0	8.0	-	4.0	8.0	-	$\mathrm{mA} /{ }_{\mu} \mathrm{S}$
PSSIFS +	Power Supply Sensitivity	$\begin{aligned} & V_{S}=(+13.5 \mathrm{~V} \text { to } 16.5 \mathrm{~V}) \\ & V_{E E}=-15 \mathrm{~V} \end{aligned}$	-	$\pm .00005$	$\pm .001$	-	± 0.0005	$\pm .001$	\%FS/\%
PSSIFS -		$\begin{aligned} & V_{E E}=-13.5 \mathrm{~V} \text { to }-16.5 \mathrm{~V} \\ & V_{S}=+15 \mathrm{~V} \end{aligned}$	-	$\pm .00025$	$\pm .001$	-	$\pm .00025$	$\pm .001$	
$\mathrm{V}_{\text {S }}$	Power Supply Range	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	4.5	-	18	4.5	-	18	V
$V_{E E}$			-18	- -	- 10.8	-18	-	- 10.8	
1+	Power Supply Current	$V_{S}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$	-	5.7	8.5	-	5.7	8.5	mA
1-			-	- 13.7	- 18.0	-	- 13.7	- 18.0	
$1+$		$\mathrm{V}_{\mathrm{S}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$		5.7	8.5	-	5.7	8.5	
1-			-	- 13.7	-18.0	-	- 13.7	-18.0	
P_{D}	Power Dissipation	$\mathrm{V}_{\mathrm{S}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$	-	234	312	-	234	312	mW
		$V_{S}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-15 \mathrm{~V}$	-	291	397	-	291	397	

Fig. 1 - Relative Accuracy Error

A6012-10: : ors

Fig. 2-Example of Nonmonotonic Behavior

16012-5a' LI8

APPLICATION INFORMATION

FUNCTIONAL DESCRIPTION

The segmented design of the AM6012, shown in the block diagram, insures that there are no significant differential nonlinearities in the transfer chaacteristic. The eight major carries of the most significant bits are not subject to the gross diffe--ential nonlinearities that can occasionally occur In an R-2R type DAC. This advantage is due to the *_ndamentally different way that the current is hansed in an AM6012.
I a conventional R-2R type DAC, when the input sode is increemented past a major carry, a current -opresenting the new code is substituted for the sim of all the less significant bit currents that weeq previously on. To avoid any nonlinearities, the - $w o$ total currents must be extremely well matched. - she case of the MS8 major carry in a 12 -bit DAC, the match must be better than one part in 2048 to -a ntain monotonicity. However, in the AM6012, ミ new current is never substituted for the sum of several smaller ones, but redirected through alternare channels and incremented one step at a time. =or example, consider the MSB carry in an 51. 6012 . In the initial state of 011111111111 as srown in the block diagram, the switches in the segment generator are set in such a way that current $\mathrm{I}_{0} \mathrm{II}_{1}$ and I_{2} are steered directly into the noatis.erting output IOUT. In addition, a portion of I_{3} $\Sigma \Sigma$ ected through the 9-bit DAC that is controlled zy the 9 least significant bits into Iout. With the ?-SBs set to " I "', all of the l_{3} current is directed th HUT except for the $1 / 512$ that goes to ground =ough, the right-most transistor in the 9-bit DAC. teer the input word is changed to 100000000000 , t-e segment decoder switch for I_{3} will be all the emt to the right, the switch for I_{4} will be in the midtle, and all the switches in the 9-bit DAC will be t: the left. IOUT will be composed of $\mathrm{I}_{0}, \mathrm{I}_{1}, \mathrm{I}_{2}$ and 3. None of I_{4} will be directed into IOUT until a hi$\because e r$ code is reached. In other words, I_{3} is now seered directly to IOUT instead of being divided

3 factor of $511 / 512$ in the 9 -bit DAC. Since no -ane current substitution occurs, there is less Elinse of a large nonlinearity at this transition than - a comparable R-2R DAC
-E-ATIVE ACCURACY VS DIFFERENTIAL NONCIEARITY
: : sefines relative accuracy as the maximum denazen of the actual. adjusted DAC outpur from ine \%is 3nalog output (a straight line drawn detween -a rmest code output voltage and the highest co. ar castout voltage) for any bir compination. Relati4e accuracy is ofton reforred to as nonlinearity. The - 12 eransfer function shown in Figure 9 has a bow
that results in a maximum relative accuracy error of 3LSB. This must be distinguished from a differential linearity error. Differential nonlinearity is the measure of the variation in analog value, normalized to full scale, associated with a ILSB change in digital input code.
For example, for a 4 mA full scale output, a change of ILSB in digital input code should result in a $0.98 \mu \mathrm{~A}$ change in the analog output current (ILSB $=4 \mathrm{~mA} \times 1 / 4096=0.98 \mu \mathrm{~A}$). If in actual use, however, a ILSB change in the input code results ina change of only $0.24 \mu \mathrm{~A}(1 / 4 \mathrm{LSB})$ in output current, the differential linearity error would be $0.74 \mu \mathrm{~A}$ or 3/4LSB.
The AM6012 has very good differential linearity in spite of the porr relative accuracy. Conversely, the DAC of Figure 1 has very good relative accuracy but poor differential linearity. The anomaly in the middle of the transfer function is the result of a positive differential linearity error followed by a negative differential linearity error greater than 1LSB. A negative output step for an increase in digital input code is referred to as nonmonotonic behavior. In general, if a DAC has a differential linearity error specification greater than 1LSB, it may be nonmonotonic at one or more of the major carries. In most case the worst differential linearity error will occur at the MSB transition point.
As noted in the functional description, the 6012's unique design minimizes differential linearity errors at the transition points of the 3MSBs. This results in a tight specification on maximum differential nonlinearity over temperature. Differential linearity is verified on all AM6012s with 100\% final testing. In many converter applications, uniform step size (or minimum differential linearity error) is more important than conformance to an ideal straight line. Twelve-bit onverters are usually needed for high resolution rather than high linearity as evidenced by the fact that few transducers are more linear than 0.1%. This is also true in video graphics, where the human eye has difficulty discerning nonlinearity of less than 5\%. The AM6012 is especially well suited for these applications since it has inherently low differential linearity error

APPLICATION INFORMATION (Continued)

ANALOG OUTPUT CURRENTS

Both true and complemented output sink currents are provided where $10+I_{0}=I_{\text {FR. }}$. Current appears at the "true" output when a " 1 " is applied to each logic input. As the binary count increases, the sink current at pin 18 increases proportionally, in the fashion of a "positive logic" D/A converter. When a " 0 " is applied to any input bit, that current is turned off at pin 18 and turned on at pin 19. A decreasing logic count increase lo as in a negative or inverter logic D/A converter. Both outputs may be used simultaneously. If one of the outputs is not required it must still be connected to ground or to a point capable of sourcing lfr; do not leave an unused output pin one.
Both outputs have an extremely wide voltage compliance enabling fast direct current-to-voltage conversion through a resistor tied to ground or other voltage source. Positive compliance is 25 V above V - and is independent of the positive supply. Negative compliance is +10 V above $\mathrm{V}-$.
The dual outputs enable double the usual peak-topeak load swing when driving loads in quasidifferential fashion. This feature is especially useful in cable driving, CRT deflection and in other balanced applications such as driving center-tapped coils and transformers.

POWER SUPPLIES

The AM6012 operates over a wide range of power supply voltages from a total supply of 20 V to 36 V . When operating with V - supplies of -10 V or less, IREF $\leq 1 \mathrm{~mA}$ is recommended. Low reference current operation decreases power consumption and increases negative compliance, reference amplifier negative common mode range, negative logic input range, and negative logic threshold range; consult the various figures fro guidance. For example, operation at -9 V with IREF $=1 \mathrm{~mA}$ is not recommended because negative output compliance would be reduced to near zero. Operation from lower supplies is possible, however at least 8 V total must be applied to insure turn-on of the internal bias network.
Symmetrical supplies are not required, as the AM6012 is quite insensitive to variations in supply voltage. Battery operation is feasible as no ground connection is required; however. an artificial ground may be used to insure logic swings, etc. remain between acceptable limits.

TEMPERATURE PERFORMANCE

The nonlinearity and mononicity specifications of the AM6012 are guaranteed to apply over the entire rated operating temperature range. Full scale
output current drift is flight, typically $\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ with zero scale output current and drift essentially negligible compared to $1 / 2$ LSB.
The temperature coefficient of the reference resistor R14 should match and track that of the output resistor for minimum overall full scale drift.

SETTLING TIME

The AM6012 is capable of extremely fast settling times, typically 250ns at IREF $=1.0 \mathrm{~mA}$. Judicious circuit design and careful board layout must be employed to obtain full performance potential during testing and application. The logic switch design enables propagation delays of only 25 ns for each of the 12 bits. Settling time to within $1 / 2$ LSB of the LSB is therefore 25 ns , with each progressively larger bit taking successively longer. The MSB settles in 250 ns, thus determining the overall settling time of 250 ns . Settling to 10 -bit accuracy requires about 90 to 130 ms . The output capacitance of the AM6012 including the package is approximately 20pF; therefore, the output RC time constant dominates settling time if $R_{L}>500 \Omega$.
Settling time and propagation delay are relatively insensitive to logic input amplitude and rise and fall times, due to the high gain of the logic switches. Settling time also remains essentially constant for Iref values down to 0.5 mA , with gradual increases for lower Iref values lies in the ability to attain a given output level with lower load resistors, thus reducing the output RC time constant
Measurement of settling time requires the ability to accurately resolve $\pm 2 \mu \mathrm{~A}$, therefore a $2.5 \mathrm{k} \Omega$ load is needed to provide adequate drive for most oscilloscopes. At Iref values of less than 0.5 mA , excessive RC damping of the output is difficult to prevent while maintaining adequate sensitivity. However, the major carry from 011111111111 to 100000000000 provides an accurate indicator of settling time. This code change does not require the normal 6.2 time constants to settle to within $\pm 0.1 \%$ of the final value, and thus settling times may be observed at lower values of Iref.
AM6012 switching transients or "glitches" are very low and may be further reduced by small capacitive loads at the output at a minor sacrifice in settling time.
Fastest operation can be octained by using short leads, minimizing output capacitance and load resistor values, and by adequate bypassing at the supply. reference. and VLC terminals. Supplies do not require large electrolytic bypass capacitors as the supply current drain is independent of input logic states; $0.1 \mu \mathrm{~F}$ capacitors at the supply pins provide full transient protection.

APPLICATION INFORMATION (Continued)

REFERENCE AMPLIFIER SETUP

The AM6012 is a multiplying D/A converter in which the output current is the product of a digital numser and the input reference current. The reference current may be fixed or may vary from nearly zero to +1.0 mA . The full range output current is a linear function of the reference current and is given by:
$A F=\frac{4095}{4096} \times 4 \times($ IREF $)=3.999$ IREF,
where IREF $=l_{14}$

It positive reference applications, an external postive reference voltage forces current through R14 to the $\operatorname{VREF}(+$) terminal (pin 14) of the reference implifier. Alternatively, a negative reference may se applied to VREF(-) at pin 15. Reference current thws from ground through R14 into VREF(+) as in me positive reference case. This negative reference sonnection has the advantage of a very high imsedance presented at pin 15. The voltage at pin - 1 is equal to and tracks the voltage at pin 15 due is the high gain of the internal reference amplifier. =:5 (nominally equal to R14) is used to cancel bias :urrent errors. (Figure 3).
三oolar references may be accommodated by offserting VREF or pin 15. The negative commonnode range of the reference amplifier is given by: $-\approx M-=\mathrm{V}$ - plus (IREF $\times 3 \mathrm{k} \Omega$) plus 1.8 V . The posive common-mode range is $\mathrm{V}+$ less 1.23 V .
when a DC reference is used, a reference bypass zeaacitor is recommended. A 5.0V TTL logic sup-
is not recommended as a reference. If a reguared power supply is used as a reference, R14 should be split into two resistors with the junction syassed to ground with a $0.1 \mu \mathrm{~F}$ capacitor.
=r most applications the tight relationship between AEF and IFS will eliminate the need for trimming EEE. If required, full scale trimming may be acz=plished by adjusting the value of R14, or by $=$ ing a potentiometer for R14.

MIETIPLYING OPERATION

The AM6012 provides excellent multiplying pertor--ance with an oxtromely linear relationsnip bet"คตา IFS and IREF Over a range of 1 mA to $1 \mu \mathrm{~A}$ illenotonic operation is maintained over a typical erge of Iref from $100 \mu \mathrm{~A}$ to 1.0 mA .

REFERENCE AMPLIFIER COMPENSATION FOR MULTIPLYING APPLICATIONS

AC reference applications will require the reference amplifier to be compensated using a capacitor from pin 16 to V - . The value of this capacitor depends on the impedance presented to pin 14. For R14 values of $1.0,2.5$ and $5 \mathrm{Ok} \Omega$; minimum values of Cc are 5, 12 and 25 pF . Larger values of R14 require proportionately increased values of C_{C} for proper phase margin (See Figure 4 and 5).
For fastest response to a pulse, low values of R14 enabling small C_{C} values should be used. If pin 14 is driven be a high impedance such as a transistor current source, none of the above values will suffice and the amplifier must be heavily compensated which will decrease overall compensated which will decrease overall bandwidth and slew rate. For R14 $=1 \mathrm{k} \Omega$ and $\mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}$, the reference amplifier slews at $4 \mathrm{~mA} / \mathrm{ms}$ enabling a transition from $I_{\text {REF }}=0$ to IREF $=1 \mathrm{~mA}$ in 250 ns.
Operation with pulse inputs to the reference amplifier may be accommodated by an alternate compensation scheme. This technique provides lowest full scale transition times. An internal clamp allows quick recovery of the reference amplifier from a cutoff (IREF $=0$) condition. Full scale transition (0 to 1 mA) occurs in 62.5 ns when the equivalent impedance at pin 14 is 800Ω and $\mathrm{C}_{\mathrm{C}}=0$. This yields a reference slew rate of $8 \mathrm{~mA} / \mu \mathrm{S}$ which is relatively independent of RIN and VIN values.

LOGIC INPUTS

The AM6012 design incorporates a unique logic input circuit which enables direct interface to all popular logic families and provides maximum noise immunity. This feature is made possible by the large input swing capability, $40 \mu \mathrm{~A}$ logic input current, and completely adjustable logic inputs may swing between -5 and +10 V .
This enables direct interface with +15 V CMOS logic, even when the AM6012 is powered from a +5 V supply. Minimum input logic swing and minimum logic threshold may be adjusted over a wide range by placing an appropriate voltage at the logic threshold control pin (pin 13. VLC). For TTL interfáce. simply ground pin 13. When intertacing ECL, an IREF $\leq 1 \mathrm{~mA}$ is recommended. For interfacing other logic familiest, sees block titied "Intertacing with Various Logic Families". For general setup of the logic control circuit. it should be neted inat pin 13 will sink 1.1 mA typical, external circuitry should be designed to accommodate this current (Figure 6).

Fig. 3 - Reference amplifier biasing

Reference Configuration	R_{14}	R_{15}	$\mathrm{R}_{\text {IN }}$	C_{c}	$I_{\text {ref }}$
Positive Reference	$\mathrm{V}_{\mathrm{R}+}$	OV	N/C	. $01 \mu \mathrm{~F}$	$\mathrm{V}_{\mathrm{R}+} / \mathrm{R}_{14}$
Negative Reference	OV	V_{R} -	N/C	. $01 \mu \mathrm{~F}$	- V_{R} - IR_{14}
Lo Impedance Bipolar Reference	$\mathrm{V}_{\mathrm{R}+}$	OV	VIN	(Note 1)	$\begin{aligned} & \left.V_{R+} / R_{14}\right)+\left(V_{\text {IN }} / R_{1 N}\right) \\ & (\text { Note 2) } \end{aligned}$
Hi Impedance Bipolar Reference	VR+	VIN	N/C	(Note 1)	$\left(V_{R_{+}}-V_{1 N}\right) / R_{14}$ (Note 3)
Pulsed Reference (Note 4)	V_{R+}	OV	VIN	No Cap	$\left(V_{R}+R_{14}\right)+\left(V_{\|N / R\| N}\right)$

Notes:

1. The compensation capacitor a function of the impedance seen at the $+V_{\text {REF }}$ input and must be at least $50 \mathrm{p} \times \mathrm{R}_{1 \text { q(eq) }}$ in $k \Omega$. For $R_{14}<800 \Omega$ no capacitop is necessary.
2. For negative values of $V_{I N} . V_{R+} / R_{14}$ must be greater than $-V_{I N} M a x / R_{1 N}$ so that ine amplifier is not turned off.
3. For positive values of $V_{I N}, V_{R_{+}}$must be greater than $V_{I N} M a x$ so the amplifier is not turned off.
4. For pulsed operation, V_{R+} provides a $D C$ offset and may be set to zero in some cases. The impedance at pin 14 should be 800Ω or less.
5. For optimum setting time, decouple V. with 20Ω and bypass with $22 \mu \mathrm{~F}$ tantulum capacitor.
6. Reference cuprent and reference resistor - there is a 1 to 4 schale factor between the reference current (lapef) and the full scale output current ($I_{\text {FS }}$). If $V_{\text {REF }}=+10 \mathrm{~V}$ and $I_{\text {FS }}=4 \mathrm{~mA}$, the value of the R_{14} is:

$$
R_{14}=\frac{4 \times 10 \text { Volt }}{4 \mathrm{~mA}}=10 \mathrm{k} \Omega \quad R_{14}=R_{15}
$$

Fig. 4 - Minimum size compensation capacitor $\left(I_{F S}=4 \mathrm{~mA}, I_{R E F}=1.0 \mathrm{~mA}\right)$

$\mathbf{R}_{14(\mathrm{EO})}(\mathrm{K} \Omega)$	$\mathbf{C}_{\mathbf{C}}(\mathrm{pF})$
10	50
5	25
2	10
1	5
5	0

*ote: A $0.01{ }_{\mu} \mathrm{F}$ capacitor is recommended for fixed reference operation.

Bg. 6 - Interfacing Circuits

Fig. 5 - Reference Amplifier Frequency response

A6012-11: : DI

Fig. 7 - Accomodating Bipolar Reference

Fig. 8 - AM6012 Logic Inputs

Code Format		Connec.	Output Scale	MSB 8182										$\begin{gathered} \text { LSB } \\ 812 \end{gathered}$	I_{0}	I_{0}	Vout
Unipolar	Straight bynary one polarity with true input code. Itue zero output.	$\begin{gathered} a-c \\ b-g \\ R_{1}=R 2=2.5 \mathrm{~K} \end{gathered}$	Positive full scale Positive full scale-LSB Zero scale	$\begin{array}{ll} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 3.999 \\ 3.998 \\ .000 \end{gathered}$	$\begin{array}{r} 000 \\ 001 \\ 3999 \end{array}$	$\begin{array}{r} 9.9978 \\ 9.9951 \\ .0000 \end{array}$
	Complementary binary one polarity with complementary input code, Irue zero output	$\begin{gathered} a-g \\ \mathrm{~b}-\mathrm{c} \\ \mathrm{R} 1=\mathrm{R} 2=25 \mathrm{~K} \end{gathered}$	Positive full scale Positive full scale-LSB Zero scale	$\begin{array}{ll} 0 & 0 \\ 0 & 0 \\ 1 & 1 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{array}{r} 000 \\ 001 \\ 3999 \end{array}$	$\begin{array}{r} 3.999 \\ 3998 \\ 000 \end{array}$	$\begin{array}{r} 9.9976 \\ 9.9951 \\ .0000 \end{array}$
Symmetrical OHset	Straight offset binary: otiset hall scale, symmetrical about zero, no true zero output	$\begin{gathered} a-c \\ b \cdot d \\ 1 \cdot 0 \\ R 1=R 3=2.5 \mathrm{~K} \\ R 2=1.25 \mathrm{~K} \end{gathered}$	Positive full scale Positive full scale-LSB (+) Zero scale (-) Zero scale Negative full scale-LSB Negative full scale	$\left\lvert\, \begin{array}{ll} 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}\right.$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{array}{r} 3.999 \\ 3.998 \\ 2.000 \\ 1.999 \\ .001 \\ .000 \end{array}$	$\begin{array}{r} 000 \\ 001 \\ 1999 \\ 2.000 \\ 3998 \\ 3999 \end{array}$	$\begin{array}{r} 99976 \\ 9.9927 \\ .0024 \\ -.0024 \\ -99927 \\ -9.9976 \end{array}$
	I's complement offset halt scale symmetrical about zero, no true zero output MSB complemented (need inverter al B1)	$\begin{gathered} \mathrm{a}-\mathrm{c} \\ \mathrm{D} \cdot \mathrm{~d} \\ \mathrm{f} \cdot \mathrm{~g} \\ \mathrm{R} 1=\mathrm{R} 3=2.5 \mathrm{~K} \\ \mathrm{R} 2=1.25 \mathrm{~K} \end{gathered}$	Positive full scale Positive full scale-LSB (+) Zero scale (-) Zero scale Negative full scale-LSB Negative full scale	$\left\lvert\, \begin{array}{ll} 0 & 1 \\ 0 & 1 \\ 0 & 0 \\ 1 & 1 \\ 1 & 0 \\ 1 & 0 \end{array}\right.$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{array}{r} 3.999 \\ 3.998 \\ 2.000 \\ 1.999 \\ 001 \\ .000 \end{array}$	$\begin{array}{r} .000 \\ 001 \\ 1.999 \\ 2.000 \\ 3.998 \\ 3.999 \end{array}$	$\begin{array}{r} 9.9976 \\ 9.9927 \\ 0024 \\ -0024 \\ -9.9927 \\ -9.9976 \end{array}$
OHset with True Zero	Oftset binary. offset half scale, true zero output.	$\begin{gathered} e-a-c \\ b-g \\ R 1=R 2=5 K \end{gathered}$	```Positive full Scale Positive full scale-LSB + LSB Zero Scale -LSB Negative full scale + LSB Negative full scale```	$\begin{array}{ll} 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{array}{r} 3.999 \\ 3.998 \\ 2.001 \\ 2.000 \\ 1.999 \\ 001 \\ 000 \end{array}$	$\begin{array}{r} .000 \\ .001 \\ 1.998 \\ 1.999 \\ 2.000 \\ 3.998 \\ 3.999 \end{array}$	$\begin{array}{r} 9.9951 \\ 9.9902 \\ 0049 \\ 000 \\ .0049 \\ -9.9951 \\ -10.000 \end{array}$
	2's complement offset half scale true zero outpul MSB complemented (need inverter at B1)	$\begin{gathered} e-a-c \\ b-g \\ R 1=R 2=5 K \end{gathered}$	Positive full scale Positive full scale-LSB +1 LSB Zero scale - 1 LSB Negative full scale + LSB Negative full scale		$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 1 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{array}{r} 3.999 \\ 3.998 \\ 2001 \\ 2.000 \\ 1.999 \\ 001 \\ 000 \end{array}$	$\begin{array}{r} 006 \\ 001 \\ 1.998 \\ 1.999 \\ 2.000 \\ 3.998 \\ 3.999 \end{array}$	$\begin{array}{r} 99951 \\ 9.9902 \\ 0049 \\ .000 \\ -0.049 \\ -9.9951 \\ -10000 \end{array}$

ADDITIONAL CODE MODIFICATIONS

1. Any of the offset binary codes may be complemented by reversing the output terminal pair.

Fig. 9 - Basic Negative Reference Operation

Fig. 11-CRT Display Driver

Fig. 12-12-BIT High-Speed A/D Converter

SES.THOMSON

AM6012-AM6012A

Fig. 13 - Interface with 8-bit Microprocessor Bus

Fig. 14 - Interface with digital signal processor TS68930/31

