AN5095K

Single chip IC with $\mathrm{I}^{2} \mathrm{C}$ bus interface for PAL/NTSC color TV system

- Overview

The AN5095K is an IC in which PAL/NTSC color television signal processing circuits are integrated into a single chip. Also, since the $\mathrm{I}^{2} \mathrm{C}$ bus interface is built in the IC, the rationalization of set production line can be realized.

Features

- Built- in video IF circuit, sound IF circuit, video signal processing circuit, color signal processing circuit, sync. signal processing circuit
- Suitable for PAL/NTSC/AV-NTSC/M-NTSC systems
- 6 dB improved sound S / N (compared with the AN5195K-B/-C)
- Package: 64-SDIP, supply voltage: $5 \mathrm{~V}, 9 \mathrm{~V}$
- Applications
- Television and televideo

Block Diagram

- Pin Descriptions

Pin No.	Description	Pin No.	Description
1	(R) clamp	33	SIF3 input/sharpness
2	(G) clamp	34	SIF regurator filter
3	(B) clamp	35	SIF2 input
4	Killer filter	36	SIF1 input
5	Killer out, $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ out, SECAM det. out	37	IF AGC filter
6	Chroma APC filter	38	Internal videol input
7	Chroma VCO (4.43 MHz)	39	SIF APC filter
8	Chroma VCO (3.58 MHz)	40	Internal video2 input
9	Black level det./Blank off SW	41	VIF detect output
10	Y_{S} input (fast blanking)	42	VIF APC 1 filter
11	External R-input	43	VIF VCO ($\mathrm{f}_{\mathrm{P}} / 2$)
12	External G-input	44	Video output
13	External B-input	45	Y-input
14	$\mathrm{V}_{\mathrm{CC} 1}$	46	H, V sync. input
15	R-output	47	$\mathrm{V}_{\text {CC3 }}-2$ (chroma/jungle/DAC)
16	G-output	48	Chroma input/black expansion start
17	B-output	49	GND (video/chroma/jungle)
18	Hor.lock detect	50	FBP input
19	GND (R, G, B/I ${ }^{2} \mathrm{C} / \mathrm{DAC}$)	51	$\mathrm{V}_{\mathrm{CC} 2}$ (hor. stability supply)
20	ACL	52	AFC2 filter
21	SDA	53	AFC1 filter
22	SCL	54	Hor. VCO ($32 \mathrm{f}_{\mathrm{H}}$)
23	$\mathrm{V}_{\mathrm{CC} 3}{ }^{-1}$ (VIF/SIF)	55	X-ray protection input
24	VIF1 input	56	Hor. pulse output
25	VIF2 input	57	Ver. sync. clamp
26	GND (VIF/SIF)	58	Ver. pulse output
27	RF AGC output	59	SECAM interface
28	Audio output	60	-(B-Y) output
29	De-emphasis	61	-(R-Y) output
30	AFT output	62	Sandcastle pulse output
31	External video input	63	-(B-Y) input
32	DC De-coupling filter	64	-(R-Y) input

Absolute Maximum Ratings

Parameter	Symbol		Rating	Unit
Supply voltage	V_{CC}	$\mathrm{V}_{\text {CC1 (14) }}$	10.5	V
		$\mathrm{V}_{\mathrm{CC} 3(23,47)}$	6.0	
Supply current	I_{CC}	I_{14}	67	mA
		I_{23+47}	126	
		I_{51}	27	
Power dissipation *2		P_{D}	1480	mW
Operating ambient temperature *1		opr	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature ${ }^{*}$		$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Note) $* 1$: Except for the operating ambient temperature, and storage temperature, all ratings are for $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$.
*2: The power dissipation shown is for the IC package in free air at $\mathrm{T}_{\mathrm{a}}=70^{\circ} \mathrm{C}$.

Recommended Operating Range

Parameter	Symbol	Range	Unit
Supply voltage	$\mathrm{V}_{\mathrm{CC} 1}$	8.1 to 9.9	V
	$\mathrm{V}_{\mathrm{CC} 3}$	4.5 to 5.5	
Terminal voltage	V_{5}	0 to 6	V
	V_{10}	0 to 6	
	V_{11}	0 to 6	
	V_{12}	0 to 6	
	V_{13}	0 to 6	
	V_{21}	0 to 6	
	V_{22}	0 to 6	
	V_{27}	0 to 10.5	
	V_{30}	0 to 10.5	
	V_{48}	0 to V_{14}	
	V_{50}	0 to V_{47}	
	V_{55}	0 to 2	
	V_{59}	0 to V_{14}	
Supply current	I_{51}	10 to 25	mA
Circuit current	I_{15}	-3.2 to +0.6	mA
	I_{16}	-3.2 to +0.6	
	I_{17}	-3.2 to +0.6	
	I_{41}	-0.8 to +0.8	
	I_{44}	-1.1 to +0.4	
	I_{46}	-0.8 to +0.1	

Recommended Operating Range (continued)

Parameter	Symbol	Range	Unit
Circuit current	I_{56}	-6.4 to +0.1	mA
	I_{58}	-0.8 to +0.1	
	I_{59}	-0.3 to +0.1	

Note) Do not apply external currents or voltages to any pins not specifically mentioned.
For circuit currents, ' + ' denotes current flowing into the IC, and ' - ' denotes current flowing out of the IC.

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Power Supply						
Supply current 1	I_{14}	Current at $\mathrm{V}_{14}=9 \mathrm{~V}$	39	48	57	mA
Supply current 2	I_{23}	Current at $\mathrm{V}_{23}=5 \mathrm{~V}$	7	10	13	mA
Supply current 3	I_{47}	Current at $\mathrm{V}_{47}=5 \mathrm{~V}$	49	63	77	mA
Stabilized supply voltage	V_{51}	Voltage at $\mathrm{I}_{51}=15 \mathrm{~mA}$	5.8	6.5	7.2	V
Stabilized supply current	I_{51}	Current at $\mathrm{V}_{51}=5 \mathrm{~V}$	2	5	7	mA
Stabilized supply input resistance	R_{51}	DC measurement, slant between at $\mathrm{I}_{51}=10 \mathrm{~mA}$ and 25 mA	1	5	10	Ω
VIF circuit Typical input; $\mathrm{f}_{\mathrm{P}}=38.9 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=90 \mathrm{~dB} \mu$, DAC data are typical						
Video detection output (typ.)	$\mathrm{V}_{\text {PO }}$	Modulation $\mathrm{m}=87.5 \%$, data $0 B=44$	1.7	2.1	2.5	V[p-p]
Video detection output (max.)	$\mathrm{V}_{\text {POmax }}$	$0 \mathrm{~B}=74$	1.9	2.6	3.3	V[p-p]
Video detection output (min.)	$\mathrm{V}_{\text {POmin }}$	$0 \mathrm{~B}=04$	1.1	1.6	2.1	V[p-p]
Video detection outputfrequency characteristic	f_{PC}	Frequency which becomes -3 dB for 1 MHz output	5.5	8	12	MHz
Synchronous peak value voltage	$\mathrm{V}_{\text {SP }}$	Synchronized peak value voltage at V[p-0] measurement	1.6	2.0	2.4	V
APC high-level pull-in range	$\mathrm{f}_{\text {PPH }}$	High-pass side pull-in range (difference from $\mathrm{f}_{\mathrm{P}}=38.9 \mathrm{MHz}$)	1.0	2.0	-	MHz
APC low-level pull-in range	$\mathrm{f}_{\text {PPL }}$	Low-pass side pull-in range (difference from $\mathrm{f}_{\mathrm{P}}=38.9 \mathrm{MHz}$)	-	-2.0	-1.0	MHz
RF AGC delay point adjustable range *1	$\Delta \mathrm{V}_{\text {RFDP }}$	Delay point in which data are $0 \mathrm{~A}=00$ to 3 F (input at $\mathrm{V}_{27}=$ approx. 6.5 V)	75	-	95	dB μ
VCO free-running frequency	Δf_{P}	Dispersion without $\mathrm{V}_{\text {IN }}$ $\mathrm{V}_{37}($ IF AGC $)=0 \mathrm{~V}$ (measurement of the difference from 38.9 MHz)	-1.2	0	1.2	MHz
RF AGC maximum sink current	$\mathrm{I}_{\text {RFmax }}$	Max. current IC can sink when pin 27 is low	1.5	3.0	-	mA
RF AGC minimum sink current	$\mathrm{I}_{\text {RFmin }}$	IC leak current at which pin 27 is high	-50	0	50	$\mu \mathrm{A}$

Note) $* 1$ to $* 9$: Refer to "Explanation of test methods".

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit

VIF circuit (continued) Typical input; $\mathrm{f}_{\mathrm{P}}=38.9 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=90 \mathrm{~dB} \mu$, DAC data are typical

AFT discrimination sensitivity ${ }^{* 2}$	$\mu_{\text {AFT }}$	$\Delta \mathrm{f}= \pm 25 \mathrm{kHz}$	40	57	75	$\mathrm{mV} / \mathrm{kHz}$
AFT center voltage	$\mathrm{V}_{\text {AFT }}$	V_{30} at $\mathrm{V}_{\text {IN }}$ without input	4.0	4.5	5.0	V
AFT maximum output voltage	$\mathrm{V}_{\text {AFT } \max }$	V_{30} at $\mathrm{f}=\mathrm{f}_{\mathrm{P}}-500 \mathrm{kHz}$	7.8	8.1	8.7	V
AFT minimum output voltage	$\mathrm{V}_{\text {AFTmin }}$	V_{30} at $\mathrm{f}=\mathrm{f}_{\mathrm{P}}+500 \mathrm{kHz}$	0.3	0.8	1.0	V
Detection output resistance	$\mathrm{R}_{\mathrm{O41}}$	DC measurement, $\mathrm{I}_{\mathrm{O}}=-0.4 \mathrm{~V}$ to -1.0 mA	70	120	170	Ω

SIF circuit Typical input; $\mathrm{f}_{\mathrm{S}}=6.0 \mathrm{MHz}, \mathrm{f}_{\mathrm{M}}=400 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{IN}}=90 \mathrm{~dB} \mu$

Audio detection output (PAL, SIF1)	$\mathrm{V}_{\text {SOP36 }}$	$\begin{aligned} & \Delta \mathrm{f}= \pm 50 \mathrm{kHz} \\ & \text { 0B-D3 }=0 \end{aligned}$	0.90	1.15	1.40	V[rms]
Audio detection output (PAL, SIF2)	$\mathrm{V}_{\text {SOP } 35}$	$\begin{aligned} & \Delta \mathrm{f}= \pm 50 \mathrm{kHz} \\ & \text { 0B-D3 }=0 \end{aligned}$	0.90	1.15	1.40	V [rms]
Audio detection output (PAL, SIF3)	$\mathrm{V}_{\text {SOP33 }}$	$\begin{aligned} & \Delta \mathrm{f}= \pm 50 \mathrm{kHz} \\ & \text { 0B-D3 }=0 \end{aligned}$	0.90	1.15	1.40	V[rms]
Audio detection output NTSC/PAL	$\mathrm{R}_{\mathrm{SN} / \mathrm{P}}$	$\begin{aligned} & \Delta \mathrm{f}= \pm 25 \mathrm{kHz} \\ & 0 \mathrm{~B}-\mathrm{D} 3=1, \text { ratio to PAL }\left(\mathrm{V}_{\mathrm{SOP} 36}\right) \end{aligned}$	-2.5	-0.5	1.5	dB
Audio detection output linearity	$\Delta \mathrm{V}_{\text {SOP }}$	$\begin{aligned} & \mathrm{f}_{\mathrm{S}}=5.5 \mathrm{MHz} \text { and } 6.0 \mathrm{MHz} \\ & \text { ratio to } 6.5 \mathrm{MHz} \end{aligned}$	-3	0	3	dB
SIF pull-in range NTSC (4.5 MHz)	$\begin{aligned} & \mathrm{f}_{\mathrm{SNH}}(4.5 \mathrm{M}) \end{aligned}$	Pull-in range of high-pass side	4.8	5.0	-	MHz
SIF pull-in range NTSC (4.5 MHz)	$\underset{\substack{\mathrm{SNL} \\(4.5 \mathrm{M})}}{\mathrm{f}_{\mathrm{s}}}$	Pull-in range of low-pass side	-	4.0	4.2	MHz
SIF pull-in range PAL (5.5 MHz)	$\underset{(5.5 \mathrm{M})}{\mathrm{f}_{\mathrm{SPH}}}$	Pull-in range of high-pass side	5.8	6.0	-	MHz
SIF pull-in range PAL (5.5 MHz)	$\begin{gathered} \mathrm{f}_{\mathrm{SPL}}(5.5 \mathrm{M}) \end{gathered}$	Pull-in range of low-pass side	-	5.0	5.2	MHz
SIF pull-in range PAL (6.0 MHz)	$\mathrm{f}_{\mathrm{SPH}}$ (6.0M)	Pull-in range of high-pass side	6.3	6.5	-	MHz
SIF pull-in range PAL (6.0 MHz)	$\underset{(6.0 \mathrm{M})}{\mathrm{f}_{\mathrm{SPL}}}$	Pull-in range of low-pass side	-	5.5	5.7	MHz
SIF pull-in range PAL (6.5 MHz)	$\underset{(6.5 \mathrm{M})}{\substack{\mathrm{f}_{\mathrm{SPH}}}}$	Pull-in range of high-pass side	6.8	7.0	-	MHz
SIF pull-in range PAL (6.5 MHz)	$\mathrm{f}_{\text {SPL }}$ (6.5M)	Pull-in range of low-pass side	-	6.0	6.2	MHz
De-emphasis terminal output resistance (PAL)	$\mathrm{R}_{29 \mathrm{P}}$	Impedance of pin 29 at PAL	32	40	48	k Ω
De-emphasis terminal output resistance (NTSC)	$\mathrm{R}_{29 \mathrm{~N}}$	Impedance of pin 29 at NTSC	48	60	72	k Ω

Note) $* 1$ to $* 9$: Refer to "Explanation of test methods".

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
AV SW circuit						
Video SW voltage gain	$\mathrm{G}_{\text {VSW }}$	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=1 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$	5.7	6.7	7.7	dB
Video SW-frequency characteristic	$\mathrm{f}_{\text {VSW }}$	Frequency to become -3 dB from $\mathrm{f}=$ $1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=0.714 \mathrm{~V}[0-\mathrm{p}]$	8	10	-	MHz
Video SW external input terminal voltage	V_{31}	DC measurement	1.7	2.0	2.3	V
Video SW external output DC voltage	$\mathrm{V}_{44 \mathrm{E}}$	DC measurement, $03-\mathrm{D} 7=1,0 \mathrm{~B}-\mathrm{D} 7=1$	4.2	4.8	5.4	V
Video SW external input resistance	$\mathrm{R}_{\mathrm{I} 31}$	DC measurement	44	56	68	$\mathrm{k} \Omega$
Video SW output resistance	$\mathrm{R}_{\mathrm{O} 44}$	DC measurement, $\mathrm{I}_{\mathrm{O}}=-0.6 \mathrm{~mA} \text { to }-1.0 \mathrm{~mA}$	110	150	190	Ω
Video SW internal clamp terminal voltage	$\mathrm{V}_{38,40}$	DC measurement, $\mathrm{I}_{\mathrm{IN}}=-1.0 \mathrm{~mA}$	1.4	1.7	2.0	V
Video SW internal output DC voltage	$\mathrm{V}_{44 \mathrm{I}}$	DC measurement	3.7	4.3	4.9	V
Audio SW voltage gain	$\mathrm{G}_{\text {ASW }}$	Data $03-\mathrm{D} 7=1,0 \mathrm{~B}-\mathrm{D} 7=1$, (input from outside) $\mathrm{f}=400 \mathrm{~Hz}$, $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$	-1	0	1	dB
Audio SW output DC voltage	V_{28}	DC measurement	3.7	4.2	4.7	V
Audio SW output resistance	$\mathrm{R}_{\mathrm{O} 28}$	DC measurement	350	450	550	Ω

Video signal processing circuit Typical input; $0.6 \mathrm{~V}[\mathrm{p}-\mathrm{p}]\left(\mathrm{V}_{\mathrm{BW}}=0.42 \mathrm{~V}[\mathrm{p}-\mathrm{p}]\right.$ stair-step) at G-out

Video output (typ.)	V_{YO}	Data $03=20$ (typ.) (contrast)	2.0	2.5	3.0	V[0-p]
Video output (max.)	$\mathrm{V}_{\text {YOmax }}$	Data $03=3 \mathrm{~F}$ (max.)	4.1	5.0	5.9	$\mathrm{V}[0-\mathrm{p}]$
Video output (min.)	$\mathrm{V}_{\mathrm{YOmin}}$	Data $03=00$ (min.)	0.15	0.50	1.00	V[0-p]
Contrast variable range	$\mathrm{Y}_{\text {Cmax/min }}$	$\begin{aligned} & 03=3 \mathrm{~F} \\ & \hline 03=00 \end{aligned}$	15	20	25	dB
Video frequency characteristic	f_{YC}	Pin $33=5 \mathrm{~V}$ (sharpness), frequency to become -3 dB from $\mathrm{f}=0.2 \mathrm{MHz}$	5.5	6.0	-	MHz
Picture quality variable range	$\mathrm{Y}_{\text {Smax/min }}$	$\frac{\mathrm{V}_{33}=7 \mathrm{~V}}{\mathrm{~V}_{33}=5 \mathrm{~V}} \quad \mathrm{f}=3.8 \mathrm{MHz}$	9	13	17	dB
Pedestal level (typ.)	$\mathrm{V}_{\text {PED }}$	Data $02=40$ (typ.) (brightness)	2.0	2.5	3.0	V
Pedestal variable width	$\Delta \mathrm{V}_{\text {PED }}$	Difference between data $02=00$ and 7 F	2.15	2.75	3.35	V
Brightness control sensitivity	$\Delta \mathrm{V}_{\text {BRT }}$	Average amount of change per 1 -step between data $02=30$ and 50	14	20	26	$\mathrm{mV} /$ Step
Video input clamp voltage	$\mathrm{V}_{\text {YCLP }}$	Pin 45 clamp voltage	3.2	3.7	4.2	V
ACL sensitivity	ACL	Amount of change of Y-out, when V_{20} $=3.0 \mathrm{~V} \rightarrow 3.5 \mathrm{~V}$	2.7	3.2	3.7	V/V
Blanking level	$\mathrm{V}_{\text {YBL }}$	Blanking pulse DC voltage	-	1.0	1.5	V

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Video signal processing circuit (continued)						
Service SW * threshold voltage	$\mathrm{V}_{\text {STH }}$	Voltage at which vertical output stops when pin 20 (ACL) voltage is decreased	-	-	0.3	V
DC restoration ratio	T_{DC}	APL10\% to 90\% $\mathrm{T}_{\mathrm{DC}}=\frac{\Delta \mathrm{AC}-\Delta \mathrm{DC}}{\Delta \mathrm{AC}} \times 100$	90	100	110	\%
Video input clamp current	$\mathrm{I}_{\text {YCLP }}$	DC measurement; Sink current inside of IC	6	11	16	$\mu \mathrm{A}$
Pedestal difference voltage	$\Delta \mathrm{V}_{\text {IPL }}$	Pedestal difference voltage of R, G, B-out	-0.2	0	0.2	V
Brightness voltage tracking	$\Delta \mathrm{T}_{\mathrm{BL}}$	Ratio of R, G, B-out fluctuation level for data 02 (bright) $=20$ to 60	0.9	1.0	1.1	Time
Video voltage gain relative ratio	$\Delta \mathrm{G}_{\mathrm{YC}}$	Output ratio of R, B-out against G-out	0.8	1.0	1.2	Time
Video voltage gain tracking	$\Delta \mathrm{T}_{\text {CONT }}$	Ratio of gain of R, G, B-out for data 03 $($ contrast $)=10$ to 30	0.9	1.0	1.1	Time/ Time

Color signal processing circuit Burst $150 \mathrm{mV}[\mathrm{p}-\mathrm{p}]$ (PAL), reference is B-out

Color-difference output (typ.)	V_{CO}	Input; Color bar Data $00=20$ (typ.), $03=20$ (typ.)	2.9	3.7	4.5	V [p-p]
Color-difference output (max.)	$\mathrm{V}_{\text {COmax }}$	Data $03=3 \mathrm{~F}$, amplitude of one side $03=20$	2.6	3.3	-	V [0-p]
Color-difference output (min.)	$\mathrm{V}_{\text {COmin }}$	Data $00=00,03=20$	-	-	100	mV[p-p]
Contrast adjustable range	$\mathrm{C}_{\text {Cmax/min }}$	$\frac{03=3 \mathrm{~F}}{03=00} \quad 00=20$	15	20	25	dB
ACC characteristic 1	ACC1	Burst 150 mV [p-p] $\rightarrow 300 \mathrm{mV}$ [p-p]	0.9	1.0	1.2	Time
ACC characteristic 2	ACC2	Burst 150 mV [p-p] $\rightarrow 30 \mathrm{mV}$ [p-p]	0.8	1.0	1.2	Time
NTSC tint center	$\Delta \theta_{\mathrm{C}}$	The difference from data $01=20$ at which tint is adjusted to center	-7	0	7	Step
NTSC tint adjustable range	$\Delta \theta_{1}$	Input; Rainbow data $01=3 \mathrm{~F}$	30	50	65	deg
NTSC tint adjustable range 2	$\Delta \theta_{2}$	Input; Rainbow data $01=00$	-65	-50	-30	deg
Color-difference output ratio (R)	R/B	Input; Rainbow for both PAL/NTSC	0.46	0.56	0.66	Time
Color-difference output ratio (G)	G/B	Input; Rainbow for both PAL/NTSC	0.28	0.34	0.40	Time
Color-difference output angle (R)	$\angle \mathrm{R}$	Input; Rainbow for both PAL/NTSC	78	90	102	deg
Color-difference output angle (G)	$\angle \mathrm{G}$	Input; Rainbow for both PAL/NTSC	224	236	248	deg
PAL color killer tolerance	$\mathrm{V}_{\text {KILLP }}$	$0 \mathrm{~dB}=150 \mathrm{mV}$ [p-p]	-57	-44	-34	dB
NTSC color killer tolerance	$\mathrm{V}_{\text {KILLN }}$	$0 \mathrm{~dB}=150 \mathrm{mV}[\mathrm{p}-\mathrm{p}]$	-57	-44	-34	dB
APC high-lebel pull-in range	$\mathrm{f}_{\text {CPH }}$	Both PAL/NTSC	450	700	-	Hz
APC low-lebel pull-in range	$\mathrm{f}_{\text {CPL }}$	Both PAL/NTSC	-	-700	-450	Hz
Color killer detection output voltage (color)	V_{KC}	V_{5}, killer out at which chroma input data 0A-D6 $=0,0 \mathrm{~A}-\mathrm{D} 7=1$	4.5	5.0	-	V

Note) *: Since pin 20 is also used partly as service SW when used as ACL, a sufficient care must be taken so as not to become V_{20} $<0.9 \mathrm{~V}$ in carrying out set design.

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Color signal processing circuit (continued) Burst 150 mV [p-p] (PAL), reference is B-out						
Color killer detection output voltage ($\mathrm{B} \& \mathrm{~W}$)	$\mathrm{V}_{\text {KBW }}$	V_{5}, killer out at which chroma input data 0A-D6 $=0,0 \mathrm{~A}-\mathrm{D} 7=1$	0	0.1	0.5	V
Demodulation output -(B-Y)	V_{DB}	Input; Color bar measured at pin 60 for both PAL/NTSC	555	695	835	$\mathrm{mV}[\mathrm{p}-\mathrm{p}]$
Demodulation output -(R-Y)	V_{DR}	Input; Color bar measured at pin 61 for both PAL/NTSC	430	540	650	$\mathrm{mV}[\mathrm{p}-\mathrm{p}]$
Demodulation output angle $\angle(\mathrm{B}-\mathrm{Y})$	$\angle \mathrm{R}_{\mathrm{DB}}$	B-Y axis out of phase	-6	0	6	deg
Demodulation output angle $\angle(\mathrm{R}-\mathrm{Y})$	$\angle \mathrm{R}_{\mathrm{DR}}$	$\mathrm{B}-\mathrm{Y}$ axis phase difference	84	90	96	deg
CW output level (4.43 MHz) ${ }^{* 3}$	$\mathrm{V}_{\text {CWP }}$	AC component, when VCO is set at 4.43 MHz	250	350	450	mV [p-p]
CW output level (3.58 MHz) ${ }^{* 3}$	$\mathrm{V}_{\text {CWN }}$	AC component, when VCO is set at 3.58 MHz	-	-	50	$\mathrm{mV}[\mathrm{p}-\mathrm{p}]$
CW output level period (SECAM) *3	$\mathrm{t}_{\text {CW }}$	Period in which CW is outputted at SECAM, PAL	1.31	1.41	1.51	ms
SECAM judgment current	$\mathrm{I}_{\text {SECAM }}$	The minimum value to take out current from pin 59 to discriminate as SECAM	50	100	150	$\mu \mathrm{A}$
SECAM judgment output	$\mathrm{V}_{\text {SE }}$	V_{5}, det. out, when SECAM signal input data 0A-D6 $=1,0 \mathrm{~A}-\mathrm{D} 7=0$, SECAM	4.5	5.0	-	V
PAL/NTSC DC level	$\mathrm{V}_{59 \mathrm{PN}}$	V_{59} DC level at PAL/NTSC	0.8	1.3	1.65	V
SECAM DC level	$\mathrm{V}_{59 \mathrm{~S}}$	V_{59} DC level at SECAM	4.1	4.6	5.1	V
RGB processing circuit DAC data are typicals						
Drive adjusting range	G_{DV}	AC change amount for R, B-out between drive adjustment max. and min.	5	6	7	dB
Offset adjusting range	$\mathrm{V}_{\text {CUT-OFF }}$	DC change amount for R, G, B-out between offset adjustment max. and min.	2.2	2.5	2.8	V
$\mathrm{Y}_{\text {S }}$ threshold voltage	$\mathrm{V}_{\text {YSON }}$	Minimum DC voltage at which Y_{S} turns on	1.0	-	-	V
Y_{S} threshold voltage	$\mathrm{V}_{\text {YSOF }}$	Maximum DC voltage at which Y_{S} turns off	-	-	0.4	V
External R, G, B pedestal difference voltage	$\Delta \mathrm{V}_{\text {EPL }}$	$\mathrm{Y}_{\mathrm{S}}=1 \mathrm{~V}$ is applied	- 200	0	200	mV
Internal and external pedestal difference voltage	$\Delta \mathrm{V}_{\text {PL/IE }}$	Internal part - external part	- 200	0	200	mV
External R, G, B output voltage	$\mathrm{V}_{\text {ERGB }}$	Input $0.7 \mathrm{~V}[p-\mathrm{p}]$, contrast $03=20$ (typ.)	1.8	2.2	2.7	V[p-p]
External R, G, B output difference voltage	$\Delta \mathrm{V}_{\text {ERGB }}$	Input $0.7 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$, contrast $03=20$ (typ.)	0.8	1.0	1.2	Time
External R, G, B contrast variable range	$\mathrm{EC}_{\text {max/min }}$	$\frac{03=3 \mathrm{~F}}{03=00}$	12	17	22	dB

Note) $* 1$ to $* 9$: Refer to "Explanation of test methods".

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
RGB processing circuit (continued) DAC data are typicals						
External R, G, B frequency characteristic	$\mathrm{f}_{\text {RGBC }}$	Input 0.2 V [p-p]	8	10	-	MHz
Internal and external R, G, B output voltage ratio	$\mathrm{V}_{\mathrm{E} / \mathrm{I}}$	External part 0.7 V[p-p]/internal part $0.6 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$ input, contrast $03=20$ (typ.)	0.78	0.92	1.06	Time
Synchronizing signal processing circuit						
Horizontal free run frequency	f_{HO}	Without sync. signal input	15.33	15.63	15.93	kHz
Horizontal output pulse duty cycle	$\tau_{\text {НО }}$	Upward pulse duty cycle	31	37	43	\%
Horizontal pull-in range	f_{HP}	Difference from $\mathrm{f}_{\mathrm{H}}=15.625 \mathrm{kHz}$	± 500	± 650	-	Hz
PAL horizontal free run frequency	$\mathrm{f}_{\text {VO-P }}$	Data 01-D7 = 1, 02-D7 = 0, forced 50 Hz mode, without sync. signal input	48	50	52	Hz
NTSC vertical free run frequency	$\mathrm{f}_{\mathrm{VO}-\mathrm{N}}$	Data $01-\mathrm{D} 7=1,02-\mathrm{D} 7=1$, forced 60 Hz mode, without sync. signal input	58	60	62	Hz
Vertical output pulse width	τ_{VO}	For both PAL/NTSC	9	10	11	1/fH
PAL vertical pull-in range	$\mathrm{f}_{\text {VPP }}$	$\mathrm{f}_{\mathrm{H}}=15.625 \mathrm{kHz}$, forced 50 Hz mode	46	-	54	Hz
NTSC vertical pull-in range	$\mathrm{f}_{\text {VPN }}$	$\mathrm{f}_{\mathrm{H}}=15.75 \mathrm{kHz}$, forced 60 Hz mode	56	-	64	Hz
Horizontal high-level output voltage	$\mathrm{V}_{56 \mathrm{H}}$	High-level DC voltage	2.8	3.1	3.4	V
Horizontal low-level output voltage	$\mathrm{V}_{56 \mathrm{~L}}$	Low-level DC voltage	-	-	0.3	V
Vertical high-level output voltage	$\mathrm{V}_{58 \mathrm{H}}$	High-level DC voltage	3.9	4.2	4.5	V
Vertical low-level output voltage	$\mathrm{V}_{58 \mathrm{~L}}$	Low-level DC voltage	-	-	0.3	V
Screen center variable range	$\Delta \mathrm{T}_{\mathrm{HC}}$	Change amount of phase difference between sync. and H -out of data $0 \mathrm{~B}=40$ to 47	2.6	3.2	4.4	$\mu \mathrm{s}$
Overvoltage protection operation voltage	$\mathrm{V}_{\mathrm{X} \text {-RAY }}$	The pin 55 minimum voltage at which H-out does not appear any longer	0.60	0.68	0.76	V
Vertical frequency discrimination (50)	f_{50}	Vertical frequency at which V_{5} becomes low (< 0.5 V)	47	-	55	Hz
Vertical frequency discrimination (60)	f_{60}	Vertical frequency at which V_{5} becomes high ($>4.5 \mathrm{~V}$)	57	-	63	Hz
Synchronous signal clamp voltage	V_{46}	V_{46} clamp voltage	1.1	1.4	1.7	V
Horizontal output start voltage	$\mathrm{V}_{\mathrm{fHS}}$	The minimum V_{50} at $\mathrm{f}_{0}>10 \mathrm{kHz}$ and horizontal oscillation output is higher than $1 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$	3.4	4.2	5.0	V
$\mathrm{I}^{2} \mathrm{C}$ interface						
Sink current when ACK	$\mathrm{I}_{\text {ACK }}$	The maximum value of pin 21 sink current at ACK	1.5	2.0	5.0	mA
SCL, SDA signal high level input	$\mathrm{V}_{\mathrm{IHI}}$		3.1	-	-	V
SCL, SDA signal low level input	$\mathrm{V}_{\text {ILO }}$		-	-	0.9	V
Allowable maximum input frequency	$\mathrm{f}_{\text {Imax }}$		-	-	100	kbit/s

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

- Design reference data

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
VIF circuit Typical input; $\mathrm{f}_{\mathrm{P}}=38.9 \mathrm{MHz}, \mathrm{V}_{\text {IN }}=90 \mathrm{~dB} \mu$						
Input sensitivity	$\mathrm{V}_{\text {PS }}$	Input level at which $\mathrm{V}_{\text {PO1 }}$ becomes -3 dB	-	45	-	dB μ
Maximum allowable input	$\mathrm{V}_{\text {Pmax }}$	Input level at which $\mathrm{V}_{\mathrm{PO} 1}$ becomes +1 dB	-	110	-	dB μ
SN ratio	SN_{P}		50	-	-	dB
Differential gain	DG_{P}		-	-	5	\%
Differential phase	DP_{P}		-	-	5	deg
Black-noise detection level ${ }^{* 4}$	$\Delta \mathrm{V}_{\mathrm{BN}}$	Difference from sync. peak value	-	-45	-	IRE
Black-noise clamp level ${ }^{* 4}$	$\Delta \mathrm{V}_{\text {BNC }}$	Difference from sync. peak value	-	45	-	IRE
RF-AGC operation sensitivity	G_{RF}	Input level difference, when $V_{27}=1 \mathrm{~V}$ goes to 7 V	0.5	-	3.0	dB
VCO switch-on drift	$\Delta \mathrm{f}_{\mathrm{PD}}$	Frequency drift from 5 sec . to 5 min . after SW-on	-	-	200	kHz
Inter modulation *5	IM	$\mathrm{V}_{\mathrm{fC}}-\mathrm{V}_{\mathrm{fP}}=-2 \mathrm{~dB}, \mathrm{~V}_{\mathrm{fS}}-\mathrm{V}_{\mathrm{fP}}=-12 \mathrm{~dB}$	46	-	-	dB
RF-AGC adjustment sensitivity	$\mathrm{S}_{\text {RF }}$	Output voltage in data 1-step, average change amount of V_{27}	1	-	4	V/step
AFT offset adjustment sensitivity	$\mathrm{S}_{\text {AFT }}$	Output voltage in data 1-step, average change amount of V_{30}	0.1	-	0.3	V/step
Video detection output fluctuation with V_{CC}	$\Delta \mathrm{V}_{\mathrm{P} / \mathrm{V}}$	$\mathrm{V}_{\mathrm{CC}}= \pm 10 \%$	-	-	± 15	\%
Video detection outputtemperature characteristics	$\Delta \mathrm{V}_{\mathrm{P} / \mathrm{T}}$	$\mathrm{T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	-	-	± 10	\%
Input resistance (pin 24, pin 25)	$\mathrm{R}_{124,25}$	$\mathrm{f}=38.9 \mathrm{MHz}$	-	1.2	-	$\mathrm{k} \Omega$
Input capacitance (pin 24, pin 25)	$\mathrm{C}_{\text {I24,25 }}$	$\mathrm{f}=38.9 \mathrm{MHz}$	-	4.0	-	pF
Sound-IF output level	$\mathrm{V}_{\text {SIF }}$	$\mathrm{f}_{\mathrm{S}}=38.9 \mathrm{MHz}-6.0 \mathrm{MHz}, \mathrm{P} / \mathrm{S}=20 \mathrm{~dB}$	90	-	110	dB μ
VCO control sensitivity	β_{P}	$\Delta \mathrm{V}_{42}= \pm 0.1 \mathrm{~V}$	2.0	-	3.5	$\mathrm{kHz} / \mathrm{mV}$
VCO adjustment range	$\mathrm{f}_{\mathrm{VCO}}$	Free-running frequency change width at data $0 \mathrm{C}=00$ to 7 F	3	-	5	MHz
RF-AGC delay point-temperature characteristics	$\Delta \mathrm{V}_{\text {DP/T }}$	$\mathrm{T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	-	-	5	dB
VCO free-running frequencytemperature characteristics	$\Delta \mathrm{f}_{\mathrm{P} / \mathrm{T}}$	$\mathrm{T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	-	300	-	kHz
AFT center frequency-temperature characteristics	$\Delta \mathrm{f}_{\text {AFT/T }}$	Input frequency at which AFT output voltage becomes $4.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	-	300	-	kHz
External mode output DC voltage	$\mathrm{V}_{\text {41EXT }}$	Output DC voltage at AV-SW outside mode	0.5	1.0	1.8	V

[^0]Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

- Design reference data (continued)

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
SIF circuit Typical input; $\mathrm{f}_{\mathrm{S}}=6.0 \mathrm{MHz}, \mathrm{f}_{\mathrm{M}}=400 \mathrm{~Hz}, \mathrm{~V}_{\text {IN }}=90 \mathrm{~dB} \mu$						
Input limiting level	$\mathrm{V}_{\text {LIM }}$	Input level, when $\mathrm{V}_{\text {Sop }}$ becomes -3 dB	-	-	50	dB μ
AM rejection ratio	AMR	$\mathrm{AM}=30 \%$	55	-	-	dB
Total harmonic distortion	THD	$\Delta \mathrm{f}= \pm 50 \mathrm{kHz}$	-	-	1.0	\%
SN ratio	SN_{A}	$\Delta \mathrm{f}= \pm 50 \mathrm{kHz}, \mathrm{f}_{\mathrm{M}}=400 \mathrm{~Hz}$, on/off	55	-	-	dB
Audio output fluctuation with V_{CC}	$\Delta \mathrm{V}_{\mathrm{S} / \mathrm{V}}$	$\mathrm{V}_{\mathrm{CC}}= \pm 10 \%$	-	-	± 10	\%
Audio output - temperature characteristics	$\Delta \mathrm{V}_{\text {S/T }}$	$\mathrm{T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	-	-	± 10	\%
SIF input resistance	R_{135}	DC measurement	-	31.5	-	$\mathrm{k} \Omega$
SIF input resistance	R_{136}	DC measurement	-	31.5	-	k Ω
AV-SW circuit						
Video-SW crosstalk (inside \rightarrow inside)	$\mathrm{C}_{\text {TVII }}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=1 \mathrm{~V}[\mathrm{p}-\mathrm{p}], \\ & \text { inside } \rightarrow \text { inside } \end{aligned}$	-	-	-55	dB
Video-SW crosstalk (outside \rightarrow inside)	$\mathrm{C}_{\text {TVEI }}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{IN}}=1 \mathrm{~V}[\mathrm{p}-\mathrm{p}], \\ & \text { inside } \rightarrow \text { outside, outside } \rightarrow \text { inside } \end{aligned}$	-	-	-55	dB
Audio-SW crosstalk (inside \rightarrow inside)	$\mathrm{C}_{\text {TAII }}$	$\begin{aligned} & \mathrm{f}_{\mathrm{S}}=6.5 \mathrm{MHz}, \mathrm{f}_{\mathrm{M}}=400 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{IN}}=1 \mathrm{~V}[\mathrm{p}-\mathrm{p}], \\ & \mathrm{f}_{\mathrm{S}}=6.5 \mathrm{MHz}, \mathrm{f}_{\mathrm{M}}=1.0 \mathrm{kHz}, \mathrm{~V}_{\mathrm{IN}}=1 \mathrm{~V}[\mathrm{p}-\mathrm{p}] \end{aligned}$	-	-	-60	dB

Video signal processing circuit Typical input; $0.6 \mathrm{~V}[\mathrm{p}-\mathrm{p}]\left(\mathrm{V}_{\mathrm{BW}}=0.42 \mathrm{~V}[\mathrm{p}-\mathrm{p}]\right.$ stair-step) at G-out

Black level expansion 1 *6	$\mathrm{V}_{\text {BL1 }}$	Input: All black, difference between pin $9=9 \mathrm{~V}$ and open (with RC)	-100	0	100	mV
Black level expansion $2 * 6$	$\mathrm{V}_{\text {BL2 }}$	Input: All black, difference between pin $9=3 \mathrm{~V}$ and 9 V	400	700	1000	mV
Black level expansion 3 *	$\mathrm{V}_{\text {BL3 }}$	Input: Approx. 20 IRE, voltage difference between pin $9=$ open and 9 V at 03 (contrast) $=3 \mathrm{~F}$ (max.)	100	300	500	mV
Contrast change by sharpness	$\Delta \mathrm{V}_{\mathrm{CS}}$	Y-out output difference at sharpness between max. and min.	-300	0	300	mV
Brightness change by sharpness	$\Delta \mathrm{V}_{\mathrm{BS}}$	Pedestal level DC difference at sharpness between max. and min.	-250	0	250	mV
Input dynamic change	$\mathrm{V}_{\text {Imax }}$	03 (contrast) $=20$ (typ.)	-	-	1.6	V[p-p]
Y-signal SN-ratio	SN_{Y}	03 (contrast) $=3 \mathrm{~F}($ max. $)$	53	-	-	dB
Black level expansion start point ${ }^{* 6}$	$\mathrm{V}_{\text {BLS }}$	Start point at $\mathrm{V}_{48}=4.5 \mathrm{~V}$	37	42	47	IRE
Video output fluctuation with V_{CC}	$\Delta \mathrm{V}_{\mathrm{Y} / \mathrm{V}}$	$\mathrm{V}_{\mathrm{CC} 1}=9 \mathrm{~V}$ (allowance: $\pm 10 \%$)	-	-	± 15	\%
Video output - temperature characteristics	$\Delta \mathrm{V}_{\mathrm{Y} / \mathrm{T}}$	$\mathrm{T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	-	-	± 10	\%
ACL start point	$\mathrm{V}_{\text {ACL }}$	V_{20} at which the output amplitude becomes 90% when ACL terminal $\left(\mathrm{V}_{20}\right)$ is decreased from 5 V	3.4	3.7	4.0	V

Note) $* 1$ to $* 9$: Refer to "Explanation of test methods".

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

- Design reference data (continued)

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Color signal processing circuit Burst 150 mV [p-p] (PAL), reference is B-out						
Demodulation output residual carrier	$\mathrm{V}_{\text {CAR1 }}$	$2 \mathrm{f}_{\text {SC }}$ level of pin 60 and pin 61	-	-	30	mV
Color-difference output residual carrier	$\mathrm{V}_{\text {CAR2 }}$	$2 \mathrm{f}_{\text {SC }}$ level of pin 15 , pin 16 and pin 17	-	-	50	mV
VCO free-running frequency (PAL)	f_{CP}	Difference from $\mathrm{f}=4.433619 \mathrm{MHz}$	-300	-	300	Hz
VCO free-running frequency (NTSC)	f_{CN}	Difference from $\mathrm{f}=3.579545 \mathrm{MHz}$	-300	-	300	Hz
f_{CO} fluctuation with V_{CC}	$\Delta \mathrm{f}_{\mathrm{C}} / \mathrm{V}_{\mathrm{CC}}$	$\begin{aligned} & \left.\mathrm{V}_{\mathrm{CC} 1}=9 \mathrm{~V} \text { (allowance: } \pm 10 \%\right), \\ & \left.\mathrm{V}_{\mathrm{CC} 3}=5 \mathrm{~V} \text { (allowance: } \pm 10 \%\right) \end{aligned}$	-300	-	300	Hz
Static phase error (PAL)	$\Delta \theta_{\mathrm{P}}$	Tint gap at $\Delta \mathrm{f}_{\mathrm{C}}=-300 \mathrm{~Hz}$ to +300 Hz change	-	-	5	$\begin{gathered} \mathrm{deg} / \\ 100 \mathrm{~Hz} \end{gathered}$
Static phase error (NTSC)	$\Delta \theta_{\mathrm{N}}$	Tint gap at $\Delta \mathrm{f}_{\mathrm{C}}=-300 \mathrm{~Hz}$ to +300 Hz change	-	-	5	$\begin{gathered} \mathrm{deg} / \\ 100 \mathrm{~Hz} \end{gathered}$
PAL/NTSC ratio	$\mathrm{R}_{\mathrm{P} / \mathrm{N}}$	Output amplitude ratio between PAL and NTSC	0.7	1.0	1.3	Time
Line crawling	$\Delta \mathrm{V}_{\text {PAL }}$	Pin 61: Output amplitude difference per 1H at -(R-Y) terminal	-	-	50	mV
Color-difference output bandwidth	f_{CC}	Band to become -3 dB	1.0	-	-	MHz
Color-difference output fluctuation with V_{CC}	$\Delta \mathrm{V}_{\mathrm{C} / \mathrm{V}}$	$\begin{aligned} & \left.\mathrm{V}_{\mathrm{CC} 1}=9 \mathrm{~V} \text { (allowance: } \pm 10 \%\right), \\ & \left.\mathrm{V}_{\mathrm{CC} 3}=5 \mathrm{~V} \text { (allowance: } \pm 10 \%\right) \end{aligned}$	-	-	± 15	\%
Color-difference output temperature characteristics	$\Delta \mathrm{V}_{\mathrm{C} / \mathrm{T}}$	$\mathrm{T}_{\mathrm{a}}=-20^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	-	-	± 15	\%
PAL/NTSC output impedance	$\mathrm{R}_{\text {O60,61PN }}$	DC measurement	400	510	620	Ω
SECAM output impedance	$\mathrm{R}_{\text {O60,61S }}$	DC measurement	100	-	-	$\mathrm{k} \Omega$
Color, black \& white DC difference voltage	$\Delta \mathrm{V}_{\text {CBW }}$	Pedestal voltage difference between with and without burst signal	-60	0	60	mV
(C-Y)/Y ratio *7	$\mathrm{R}_{\mathrm{C} / \mathrm{Y}}$	Color bar input, B-out contrast typ. color data $00=30$	0.9	1.2	1.5	$\begin{aligned} & \mathrm{V}[0-\mathrm{p}] / \\ & \mathrm{V}[0-\mathrm{p}] \end{aligned}$

RGB processing circuit

Y_{S} change-over speed	f_{YS}	f_{YS}, when Y_{S} input is 3 V[0-p] and output level is 3 dB	7	-	-	MHz
Outside R, G, B input dynamic range	$\mathrm{V}_{\mathrm{DEXT}}$	Contrast max. data 03=3F	1.0	-	-	$\mathrm{V}[\mathrm{p}-\mathrm{p}]$
Inside and outside crosstalk	$\mathrm{CT}_{\mathrm{RGB}}$	Leakage at $\mathrm{f}=1 \mathrm{MHz}, 1 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$, $\mathrm{Y}_{\mathrm{S}}=5 \mathrm{~V}$	-	-	-50	dB

Synchronizing signal processing circuit

Lock detection output voltage	V_{LD}	V_{18} at horizontal AFC lock	5.7	6.3	6.9	V
Lock detection charge and discharge current	I_{LD}	DC measurement	± 0.6	± 0.8	± 1.1	mA

Note) $* 1$ to $* 9$: Refer to "Explanation of test methods".

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

- Design reference data (continued)

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

| Parameter | Symbol | Conditions | Min | Typ | Max | Unit |
| :--- | :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| Synchronizing signal processing circuit (continued) | | | | | | |
| FBR (R, G, B) slice level | $\mathrm{V}_{\mathrm{FBP}}$ | Pin 50 minimum voltage at which
 blanking is applied to R, G, B output | 0.4 | 0.75 | 1.1 | V |
| FBP (AFC2) slice level | $\mathrm{V}_{\mathrm{FBPH}}$ | Pin 50 minimum voltage in which
 AFC2 operates | 1.5 | 1.9 | 2.3 | V |
| Horizontal AFC μ | μ_{H} | DC measurement | 30 | 37 | 44 | $\mu \mathrm{~A} / \mu \mathrm{s}$ |
| Horizontal VCO β | β_{H} | β curve slant near $\mathrm{f}=15.75 \mathrm{kHz}$ | 1.4 | 1.9 | 2.4 | $\mathrm{~Hz} / \mathrm{mV}$ |
| Burst gate pulse position *8 | $\mathrm{P}_{\mathrm{BGP}}$ | Delay from H sync. rise for both PAL/
 NTSC | 0.2 | 0.4 | 0.6 | $\mu \mathrm{~s}$ |
| PAL burst gate pulse width *8 | $\mathrm{W}_{\mathrm{BGPP}}$ | | 3.4 | 4.0 | 4.6 | $\mu \mathrm{~s}$ |
| NTSC burst gate pulse width ${ }^{* 8}$ | $\mathrm{~W}_{\mathrm{BGPN}}$ | | 2.5 | 3.0 | 3.5 | $\mu \mathrm{~s}$ |
| Burst gate pulse output voltage | $\mathrm{V}_{\mathrm{BGP}}$ | Pin 62 DC voltage during BGP period | 4.5 | 4.7 | 4.9 | V |
| H blanking pulse output voltage | $\mathrm{V}_{\mathrm{HBLK}}$ | Pin62 DC voltage during H blanking
 pulse period | 2.1 | 2.4 | 2.7 | V |
| V blanking pulse output voltage | $\mathrm{V}_{\mathrm{VBLK}}$ | Pin62 DC voltage during V blanking
 pulse period | 2.1 | 2.4 | 2.7 | V |
| PAL V blanking pulse width | W_{VP} | Pulse width at $\mathrm{f}=15.625 \mathrm{kHz}$ | 1.31 | 1.41 | 1.51 | ms |
| NTSC V blanking pulse width | W_{VN} | Pulse width at f = 15.73 kHz | 1.01 | 1.11 | 1.21 | ms |
| FBP allowable range *9 | $\mathrm{T}_{\mathrm{FBP}}$ | Time from H-out rise to FBP center | 12 | - | 19 | $\mu \mathrm{~s}$ |
| FBP maximum allowable input
 voltage | $\mathrm{V}_{\mathrm{AFBP}}$ | | 2.5 | - | 5.0 | V |

${ }^{2}$ C interface

Bus free before start	$\mathrm{t}_{\mathrm{BUF}}$		4.0	-	-	$\mu \mathrm{s}$
Start condition set-up time	$\mathrm{t}_{\mathrm{SU}, \mathrm{STA}}$		4.0	-	-	$\mu \mathrm{s}$
Start condition hold time	$\mathrm{t}_{\mathrm{HD}, \mathrm{STA}}$		4.0	-	-	$\mu \mathrm{s}$
Low period SCL, SDA	$\mathrm{t}_{\mathrm{LOW}}$		4.0	-	-	$\mu \mathrm{s}$
High period SCL	$\mathrm{t}_{\mathrm{HIGH}}$		4.0	-	-	$\mu \mathrm{s}$
Rise time SCL, SDA	t_{r}		-	-	1.0	$\mu \mathrm{~s}$
Fall time SCL, SDA	t_{f}		-	-	0.35	$\mu \mathrm{~s}$
Data set-up time (write)	$\mathrm{t}_{\mathrm{SU}, \mathrm{DAT}}$		0.25	-	-	$\mu \mathrm{s}$
Data hold time (write)	$\mathrm{t}_{\mathrm{HD}, \mathrm{DAT}}$		0	-	-	$\mu \mathrm{s}$
Acknowledge set-up time	$\mathrm{t}_{\mathrm{SU}, \mathrm{ACK}}$		-	-	3.5	$\mu \mathrm{~s}$
Acknowledge hold time	$\mathrm{t}_{\mathrm{HD}, \mathrm{ACK}}$		0	-	-	$\mu \mathrm{s}$
Stop condition set-up time	$\mathrm{t}_{\mathrm{SU}, \mathrm{STO}}$		4.0	-	-	$\mu \mathrm{s}$

Note) $* 1$ to $* 9$: Refer to "Explanation of test methods".

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

- Design reference data (continued)

Note) The characteristics listed below are theoretical values based on the IC design and are not guaranteed.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit	
DAC							
3-bit, 6-bit, 7-bit DAC DNLE	$\mathrm{L}_{3,6,7}$	$1 \mathrm{LSB}=\{$ data (max.) - data (00) $\}$ $/ 7,63,127$	0.1	1.0	1.9	LSB/ Step	
8-bit DAC DNLE	L_{8}	$1 \mathrm{LSB}=\{$ data (FF) - data (00) $\} / 255$ $(7 \mathrm{~F} \rightarrow 80$ excluded $)$	0.1	1.0	1.9	LSB/ Step	
8-bit DAC DNLE (80)	L_{8-80}	$\mathrm{LSB}=\{$ data (FF) - data (00) $\} / 255$ $(7 \mathrm{~F} \rightarrow 80)$	0.1	1.0	2.9	LSB/ Step	
AFT DAC overlap		Δ Step	8-bit of AFT double-stage changeover overlap	27	32	37	Step

- Explanation of test methods

*1: RF AGC delay point adjusting range: $\Delta \mathrm{V}_{\mathrm{RFdp}}$

Figure 1. Gain reduction curve

In the case of VIF gain reduction curve (figure 1), if the RF AGC delay point adjustment DAC (0 A) goes 00 to 3 F , the internal comparison voltage changes by $\Delta \mathrm{V}$, and the delay point adjustment range is determined.
*2: AFT discrimination sensitivity: $\mu \mathrm{AFT}$
Adjust DAC ($0 \mathrm{C}-\mathrm{D} 7$) and DAC (09) so that the AFT output voltage $\left(\mathrm{V}_{30}\right)$ becomes approx. 4.5 V when $\mathrm{f}_{\mathrm{P}}=$ 38.9 MHz.

Measure $\Delta \mathrm{V}_{30}$ when $\mathrm{f}_{\mathrm{P}}=38.9 \mathrm{MHz} \pm 25 \mathrm{kHz}$.
*3: Refer to "■ Technical Information 4. 7) PAL/NTSC, SECAM interface".
*4: Black noise detection level: $\Delta \mathrm{V}_{\text {BN }}$
Black noise clamp level: $\Delta \mathrm{V}_{\text {BNC }}$

Figure 2. Black noise rejection characteristic
*5: Inter modulation: IM
Apply the signal of $\mathrm{f}_{\mathrm{P}}=38.9 \mathrm{MHz}, 90 \mathrm{~dB} \mu$ and fix the voltage of pin 37 (IF AGC) under that condition. $\mathrm{f}_{\mathrm{P}}=38.9 \mathrm{MHz}, 82 \mathrm{~dB} \mu$
$\mathrm{f}_{\mathrm{P}}=38.9 \mathrm{MHz}-4.43 \mathrm{MHz}, 80 \mathrm{~dB} \mu$
$\mathrm{f}_{\mathrm{P}}=38.9 \mathrm{MHz}-6.0 \mathrm{MHz}, 70 \mathrm{~dB} \mu$

Input those 3 signals and measure 1.57 MHz component of the detection output.

$$
\mathrm{IM}=20 \log \frac{\text { vieo component [rms] }}{\mathrm{V}_{1.57 \mathrm{MHz}}[\mathrm{rms}]}
$$

Electrical Characteristics at $\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}$ (continued)

- Explanation of test methods (continued)
*6: Black level extension: V_{BL}
In the black level extension characteristics (figure 3), when

Figure 3. Black level expansion characteristics the voltage of pin 9 (black level detection filter) is $\mathrm{V}_{\mathrm{CC} 1}=9 \mathrm{~V}$, the operation of the black level extension circuit is turned off and the characteristic becomes as shown by the line -- ---- . Also, if the voltage of pin 9 is set at 3 V , the black level extension forcibly comes to start and the characteristic becomes as shown by the line ------. When pin 9 is set by only R, C filter, the black level extension characteristic as shown by the line __ can be obtained.
$\mathrm{V}_{\text {BL3 }}$ shows an output level difference between the black extension is off and the normal operation when the video input level is constant in 20 IRE.
$\mathrm{V}_{\text {BLS }}$ is a point where the black extension comes to start and can be adjusted by the DC voltage of pin $48\left(\mathrm{C}_{\text {IN }}\right)$.

V_{48}	2.5 V	4.5 V	6.5 V
Start point	52 IRE	42 IRE	32 IRE

*7: (C-Y)/Y ratio: RC/Y
C-Y is the voltage from 0 level to the peak of B-out when color is typ. $(00=20)$ and contrast is typ. (03 $=20) . \mathrm{Y}$ is the voltage from the pedestal of contrast at typ. to 100 IRE white level.
*8: Burst gate pulse

Figure 4. Burst gate pulse
*9: FBP allowable range : $\mathrm{t}_{\mathrm{FBP}}$

Figure 5. FBP allowable range

As shown in figure 4, the position of the burst gate pulse is the period from the rise time of the H -sync. signal of pin 46 to the rise time of BGP.

Figure 5 shows the relationship between Hor. pulse and FBP. The phase delay from Hor. pulse to FBP differs from set to set. This IC has an adjusting function for the screen center position. The phase range in which this function normally operate is $\mathrm{t}_{\mathrm{FBP}}$.

Terminal Equivalent Circuits
Pin No.

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	voltage
$\begin{aligned} & 7 \\ & 8 \end{aligned}$		Pin 7; Chroma. oscillation pin (4.43 MHz) Pin 8; Chroma. oscillation pin (3.58 MHz): Either one of the oscillations of 4.43 MHz or 3.58 MHz is performed by chroma. oscillation pin. Frequency changeover is carried out by 08-D7 bit of $\mathrm{I}^{2} \mathrm{C}$ bus. When $08-\mathrm{D} 7=0$; $\mathrm{I}_{\mathrm{P} 1}, \mathrm{I}_{\mathrm{P} 2}$ turn on, and 4.43 MHz oscillates When $08-\mathrm{D} 7=0$; $\mathrm{I}_{\mathrm{N} 1}, \mathrm{I}_{\mathrm{N} 2}$ turn on and 3.58 MHz oscillates The pattern from pin to oscillator should be as short as possible.	$\begin{gathered} \hline \mathrm{AC} \\ \mathrm{f}=\mathrm{f}_{\mathrm{C}} \\ \text { approx. } \\ 0.7 \mathrm{~V}[\mathrm{p}-\mathrm{p}] \end{gathered}$
9		Black level detection pin Blanking off SW pin: Black level detection filter pin for black extension circuit. Excluding the blanking period, holds the most black Y level. The sensitivity that the black extension (area judged as black) comes work is variable by means of external R. When R is large, it responds to a small area. Apply $\mathrm{V}_{\mathrm{CC}}(9 \mathrm{~V})$ to pin 9 when stopping the black extension circuit. Blanking is turned off when pin 9 is GND (black extension is also off).	$\begin{gathered} \mathrm{DC} \\ \text { approx. } 5.1 \mathrm{~V} \end{gathered}$
10		Y_{S} input pin: Fast-blanking pulse input pin for external analog R, G, B. On at a voltage over 1 V . Off at a voltage under 0.4 V .	AC (pulse)

Terminal Equivalent Circuits (continued)
12

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	voltage
19	-	GND: R, G, B circuit. DAC, $\mathrm{I}^{2} \mathrm{C}$ circuit.	-
20		ACL pin: If DC voltage of pin 20 is decreased from the outside, the contrast is turned down. Service SW. Note) Since pin 20 also serves as the service SW when used as ALC, design the set so as not to allow $\mathrm{V}_{20}<0.9 \mathrm{~V}$.	DC approx. 3 V
21		$\mathrm{I}^{2} \mathrm{C}$ bus data input pin	$\begin{gathered} \mathrm{AC} \\ \text { (pulse) } \end{gathered}$
22		$\mathrm{I}^{2} \mathrm{C}$ clock input pin	$\begin{gathered} \mathrm{AC} \\ \text { (pulse) } \end{gathered}$
23	-	$\mathrm{V}_{\mathrm{CC} 3}-1$ (5 V typ.): For VIF and SIF circuitr.	$\begin{aligned} & \mathrm{DC} \\ & 5 \mathrm{~V} \end{aligned}$

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	voltage
$\begin{aligned} & 24 \\ & 25 \end{aligned}$		Pin24; VIF input pin-1 Pin25; VIF input pin-2: Balanced input by VIF amp. input.	AC $\mathrm{f}=\mathrm{f}_{\mathrm{P}}$ DC level approx. 2.7 V
26	-	GND: For VIF and SIF circuit.	DC
27		RF AGC output pin: Open collector output and usable at any bias value (12 V max.).	DC
28		Audio output pin	AC 0 kHz to 20 kHz
29		De-emphasis pin: De-emphasis filter pin for sound detection signal. External C for PAL/NTSC is the same (internal impedance changes). PAL: $12 \mathrm{k} \Omega / / 60 \mathrm{k} \Omega \times 1200 \mathrm{pF}=48 \mu \mathrm{~s}$ NTSC: $60 \mathrm{k} \Omega \times 1200 \mathrm{pF}=72 \mu \mathrm{~s}$	$\begin{gathered} \mathrm{AC} \\ 0 \mathrm{kHz} \text { to } \\ 20 \mathrm{kHz} \end{gathered}$

Terminal Equivalent Circuits (continued)
Pin No.

Terminal Equivalent Circuits (continued)
Pin No.

Terminal Equivalent Circuits (continued)
Pin No.

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	voltage
43		VIF oscillation pin: Depending on VIF frequency, change oscillation coil. The oscillation frequency is $1 / 2$ of f_{p}.	$\begin{gathered} \hline \mathrm{AC} \\ \mathrm{f}=\mathrm{f}_{\mathrm{p}} / 2 \\ \text { approx. } \\ 0.7 \mathrm{~V}[\mathrm{p}-\mathrm{p}] \\ \mathrm{DC} \text { level } \\ \text { approx. } 3.9 \mathrm{~V} \end{gathered}$
44		Video output pin: This pin outputs int.video 1 , int. video 2 or ext. video signal selected by AV SW.	$\begin{gathered} \mathrm{AC} \\ 2 \mathrm{~V}[\mathrm{p}-\mathrm{p}] \\ \sqrt{3} \mathrm{~b} \\ \mathrm{DC} \text { level } \\ \text { approx. } 4.5 \mathrm{~V} \end{gathered}$
45		Video input pin: Input pin for video signal (composite video also available). Typical input $0.6 \mathrm{~V}[\mathrm{p}-\mathrm{p}]$. Sync. top is clamped at 3.5 V . The video signal should be inputted with low impedance.	
46		Vertical and horizontal sync. separation input pin: Sync. top is clamped at 1.3 V .	
47	-	$\mathrm{V}_{\mathrm{CC} 3-2}$ (5 V typ.) For chroma jungle circuit.	$\begin{aligned} & \hline \mathrm{DC} \\ & 5 \mathrm{~V} \end{aligned}$

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	voltage
48		Chroma signal input pin Black extension start point adjusting pin: Pin 48 is chroma signal input pin, and the black extension start point is adjusted by DC voltage applied from the outside.	$\begin{gathered} \text { AC+DC } \\ \text { burst } \\ 150 \mathrm{mV}[\mathrm{p}-\mathrm{p}] \text { typ. } \\ \text { DC } \\ 4.5 \mathrm{~V} \text { typ. } \end{gathered}$
49		GND: For video chroma jungle circuit.	$\begin{aligned} & \mathrm{DC} \\ & 0 \mathrm{~V} \end{aligned}$
50		FBP input pin: FBP input pin for horizontal blanking and AFC circuit. Threshold level H-BLK: 0.7 V AFC: 1.9 V It becomes all blanking when DC 1.3 V is applied from the outside.	AC FBP $]^{n}$
51		Horizontal stabilized power supply pin: Stabilized power supply for starting up the horizontal circuit that has a zener circuit inside.	$\begin{gathered} \mathrm{DC} \\ 6.3 \mathrm{~V} \end{gathered}$
52		Horizontal AFC2 filter pin: Comparing the phase of FBP and that of inside pulse of the IC, charge to and discharge from the capacitor connected to pin 52 are done. Performed by charging and discharging in DC current by the screen center position adjusting DAC. V_{52} changes depending on the time from H-out to FBP, and the slice level of internal sawtooth waveform changes.	$\begin{gathered} \mathrm{DC} \\ 1.5 \mathrm{~V} \text { to } \\ 3.5 \mathrm{~V} \end{gathered}$

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	voltage
53		Horizontal AFC1 filter pin: Comparing the phase of horizontal sync. signal and that of inside pulse of the IC, charge to and discharge from the capacitor connected to pin 53 are done. R1, R2, C1, and C2 are lag-lead filter for	$\begin{gathered} \text { DC } \\ 4.3 \mathrm{~V} \text { typ. } \end{gathered}$
54		Horizontal oscillation pin: Oscillate at $32 \times \mathrm{f}_{\mathrm{H}} \approx 503 \mathrm{kHz}$ by means of ceramic oscillator. Horizontal and vertical pulse are generated by means of count down circuit in the IC.	$\begin{gathered} \mathrm{AC} \\ \mathrm{f}=32 \mathrm{f}_{\mathrm{H}} \\ \binom{\text { approx. }}{503 \mathrm{kHz}} \end{gathered}$
55		Overvoltage protection input pin: Input pin for the protect circuit against X-ray due to overvoltage. Shut-down is started by internal logic circuit when H -out pulse is low. (Prevent the horizontal drive Tr destruction.)	DC normally 0 V
56		Horizontal pulse output pin: Duty cycle is approx. 36%.	

Terminal Equivalent Circuits (continued)
Pin No.

Terminal Equivalent Circuits (continued)

Pin No.	Equivalent circuit	Description	voltage
62		Sand-castle pulse output pin: The sand-castle pulse is outputted to 1HDL and SECAM IC.	AC pulse $\rfloor^{4.7 \mathrm{~V}} \begin{aligned} & 2.4 \mathrm{~V} \end{aligned}$
$\begin{aligned} & 63 \\ & 64 \end{aligned}$		Pin63; -(B-Y) input pin Pin64; -(R-Y) input pin: The color difference signal outputted from 1 HDL is inputted. The pedestal level is clamped at 4 V by means of clamp circuit.	AC -(B-Y) DC level 4 V

Usage Notes

1. The following terminals are not strongly resistant to surge latch-up. The precautions should be observed when using the IC.
1) Serge

The + side breakdown voltage of pin 22 and pin 23 is approx. 190 V if the surge source capacitance is 200 pF .
The + side breakdown voltage of pin 45 is approx. 160 V if the surge source capacitance is 200 pF .
Therefore, do not apply a surge stronger than that.
2) Latch-up

For pin 18, pin 21, pin 22, pin 51, pin 54, pin 55 and pin 56, the latch-up occurs by the + side surge of approx. 150 V (surge source capacitance 200 pF). Therefore, do not apply a surge stronger than each voltage indicated for each pin.

Note) The stronger surge common to the above 1) and 2) means that the establishment of either one of the following two cases; the surge source capacitance is larger than the indicated value or the surge voltage is higher than the indicated value.

Usage Notes (continued)

2. The protection diode of each Pin is as shown in the following table;

	Pin	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26
With (\bullet) or Without	V_{CC}	\bullet	\times	\bullet	\bullet	\bullet	\bullet	\times	\bullet	\times	\times	\times	\bullet	\bullet	\times												
	(\times Surge diode																										
	GND	\bullet	\times	\bullet	\bullet	\bullet	\bullet	\times	\bullet	\times	\times	\times	\bullet	\bullet	\times												
V_{CC} node being connected	1	1	1	3	3	3	3	3	1	1	1	1	1		1	1	1	2		1				3	3		

	Pin	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51

	Pin	53	54	55	56	57	58	59	60	61	62	63	64
With (\bullet) or Without	V_{CC}	\bullet	\bullet	-	-	-	-	\bullet	-	\bullet	\bullet	\bullet	\bullet
(\times) Surge diode	GND	-	-	-	\bullet	-	-	-	-	-	\bullet	-	\bullet
$V_{\text {CC }}$ node being connected		2	2	2	2	3	3	1	3	3	3	1	1

V_{CC} node
$1 \rightarrow \mathrm{~V}_{\mathrm{CCl}}$ (9 V system)
$2 \rightarrow \mathrm{~V}_{\mathrm{CC} 2}(6.5 \mathrm{~V}$ system)
$3 \rightarrow \mathrm{~V}_{\mathrm{CC} 3}(5 \mathrm{~V}$ system)

Technical Information

- Explanation of each block

1. VIF
1) Adapting the inter carrier PLL coherent detection method.
2) The VCO of VIF is controlled by $I^{2} C$ bus (7 -bit): Oscillation at $1 / 2$ of the f_{p} frequency. (2 times multiplier circuit is inside.) Built-in double APC circuit of frequency and phase.
3) AFT without coil: It is applicable to both VS and FS tuners by amplifying the error voltage of APC and making S-curve to obtain AFT output. The DC offset is controlled by $\mathrm{I}^{2} \mathrm{C}$ bus (9-bit). The AFT defeat is also possible.
4) Since the VCO oscillates at $1 / 2$ frequency, a high-frequency disturbance such as tweet is reduced.
5) The video detection output is $2.0 \mathrm{~V}[p-p]$ typical: The level adjustment is carried out by $I^{2} \mathrm{C}$ bus .
6) The built-in lock detection circuit realizes a stable pulling by the changeover of time constant for APC.
7) The delay point of RF AGC is adjusted by $I^{2} \mathrm{C}$ bus (6-bit).
2. SIF
1) The SIF detection uses PLL coherent detection method.
2) 4 frequencies are changed over for use as the VCO oscillation frequency.

At NTSC; 4.5 MHz
At PAL; 5.0 MHz, 5.5 MHz, 6.5 MHz
3) It is possible for the SIF detection output to deal with the difference in deviation of PAL/NTSC by changing over an amplifier of +6 dB .
4) Built-in video/SIF SW.

Video SW; 2 systems (with 6 dB amp.)
SIFSW; 3 systems

Technical Information (continued)

- Explanation of each block (continued)

3. Video
1) The delay line aperture control (contours emphasis type) is used for sharpness control.

The circuit as well as the black extension circuit realizes a high picture quality.
2) Built-in pedestal clamp filter.
3) Service SW: (Y contrast min., vertical output stop).
4. Chroma

1) The circuit realizes an adjustment free condition by using base band 1HDL (externally attached).
2) Incorporation of ACC filter reduces the number of external components.
3) It is possible to support the other systems by the mode changeover $\mathrm{I}^{2} \mathrm{C}$ bus (1) PAL/NTSC, (2) $4.43 \mathrm{MHz} / 3.58$ MHz, (3) Forced PN/ForcedSECAM.
4) Equipped with the killer output terminal for system discrimination by microcomputer. (When killer is on \rightarrow 0 V , killer is off $\rightarrow 5 \mathrm{~V}$)
5) The color difference output terminal becomes a high impedance state at SECAM.
6) Since the circuit is provided with the color difference input terminal, the features of ICs such as the AN5244 (IC for color signal compensation) can be connected.
7) PAL/NTSC, SECAM interface (pin 59)

Mode	DAC(3.58 MHz/4.43 MHz)	Pin59 output	f_{C}	AC level	
PAL/NTSC	3.58 MHz	Approx. 1.3 V	3.58 MHz	\times	CW output
	4.43 MHz	Approx. 1.3 V	4.43 MHz	$250 \mathrm{mV}[\mathrm{p}-\mathrm{p}]$	
SECAM	3.58 MHz	Approx. 4.6 V	4.43 MHz	$250 \mathrm{mV}[\mathrm{p}-\mathrm{p}]$	Output for V-blank
	4.43 MHz	Approx. 4.6 V	4.43 MHz	$250 \mathrm{mV}[\mathrm{p}-\mathrm{p}]$	period only *

Note) *: AC component of 4.43 MHz is outputted in the vertical sweep period only.

$250 \mathrm{mV}[\mathrm{p}-\mathrm{p}]$

(R, G, B out)
5. RGB

1) It supports not only the OSD but also the teletext signal in an analog input system.
(The output level is interlocked with the contrast of TV signal side.)
2) The white balance (drive, cut-off) adjustment is performed by $\mathrm{I}^{2} \mathrm{C}$ bus.
6. Jungle
1) The horizontal circuit uses the count down method by $32 \mathrm{f}_{\mathrm{H}}$ ceramic oscillator. The AFC circuit uses double method.
2) By the adaption of trigger method count down circuit, the vertical circuit can obtain a stable vertical synchronization without adjustment at all times. The output is pulse signal, so that there is no degradation of interface due to the influence of pattern layout.

Technical Information (continued)

- Explanation of each block (continued)

6. Jungle (continued)
3) Built-in frequency discrimination circuit: The circuit outputs the judgment results of $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ in accordance with the frequency of the vertical synchronizing signal.
($60 \mathrm{~Hz} \rightarrow$ high)
Input frequency
Judgement
Output voltage

4) The output holds the previous state when the input frequency is 45 Hz or less and 65 Hz or more, and the output changes for the first time when judged as 50 Hz or 60 Hz for 3 consecutive vertical periods.
5) The horizontal detection circuit and X-ray protection circuit (shut-down method) are built in.
6) The screen center position is adjustable by the $\mathrm{I}^{2} \mathrm{C}$ bus. $(\pm 1.6 \mu \mathrm{~s})$
7) For the blue-back in a weak electric field, the stable screen image is held by the vertical trigger off mode ($\mathrm{I}^{2} \mathrm{C}$ bus).
7. $\mathrm{I}^{2} \mathrm{C}$ bus
1) Incorporating 14 DAC controls and 12 SWs for eliminating the need for the adjustment of set mechanism.
2) Provided with automatic increment function.

- Sub address 0 *: Automatic increment mode.
(When data are sent in regular succession, sub address changes successively and data are inputted.)
- Sub address 8 *:
(When data are sent in regular succession, data are inputted with the same sub address.)

3) $I^{2} \mathrm{C}$ Bus Protocol

- Slave address: 10001010 (8AH)
- Slave address format

4) Sub address byte and data byte format

The description in () shows the initial state.

Sub address	Data byte							
	D7	D6	D5	D4	D3	D2	D1	D0
$\begin{gathered} 00 \\ (21 \mathrm{H}) \end{gathered}$	$\begin{gathered} \mathrm{P} / \mathrm{N} \\ (0 \rightarrow \mathrm{P}) \end{gathered}$	$\begin{gathered} \mathrm{PN} / \mathrm{S} \\ (0 \rightarrow \mathrm{PN}) \end{gathered}$			Color			\rightarrow
$\begin{gathered} 01 \\ (21 \mathrm{H}) \end{gathered}$	$\begin{gathered} \text { Ver. auto } \\ (0 \rightarrow \text { auto }) \end{gathered}$	$\begin{gathered} \text { Ver. TRG } \\ (0 \rightarrow \text { normal }) \end{gathered}$			Tint			\rightarrow
$\begin{gathered} 02 \\ (41 \mathrm{H}) \end{gathered}$	$\begin{aligned} & \text { Ver. OSC } \\ & (0 \rightarrow 50) \end{aligned}$	\leftarrow			Brightness			\rightarrow
$\begin{gathered} 03 \\ (21 \mathrm{H}) \\ \hline \end{gathered}$	SIF	Video SW			Contrast			\rightarrow
$\begin{gathered} 04 \\ (81 \mathrm{H}) \end{gathered}$					Cut off R			\rightarrow
$\begin{gathered} 05 \\ (81 \mathrm{H}) \\ \hline \end{gathered}$					Cut off G			\rightarrow
$\begin{gathered} 06 \\ (81 \mathrm{H}) \end{gathered}$					Cut off B			\longrightarrow

Technical Information (continued)

- Explanation of each block (continued)

7. $\mathrm{I}^{2} \mathrm{C}$ bus (continued)
4) Sub address byte and data byte format (continued)

The description in () shows the initial state.

Sub address	Data byte							
	D7	D6	D5	D4	D3	D2	D1	D0
$\begin{gathered} 07 \\ (41 \mathrm{H}) \end{gathered}$	$\begin{gathered} \hline \text { SIF VCO } \\ \text { SW1 } \end{gathered}$	4			Drive R			\rightarrow
$\begin{gathered} 08 \\ (41 \mathrm{H}) \end{gathered}$	$\begin{gathered} \text { Chroma } \\ \text { VCO } \\ (0 \rightarrow 4.43) \end{gathered}$				Drive B			\rightarrow
$\begin{gathered} 09 \\ (01 \mathrm{H}) \end{gathered}$					AFT offset			\longrightarrow
$\begin{gathered} 0 \mathrm{~A} \\ (21 \mathrm{H}) \end{gathered}$	$\begin{aligned} & 50 \mathrm{~Hz} / 60 \mathrm{~Hz} \\ & \text { killer out } \\ & \text { SW } \end{aligned}$	$\begin{gathered} \text { SECAM det. } \\ \text { SW } \end{gathered}$	4		RF AGC delay			\rightarrow
$\begin{gathered} 0 \mathrm{~B} \\ (45 \mathrm{H}) \end{gathered}$	SIF/ext. SW		Video adjust	\longrightarrow	$\begin{aligned} & \text { SIF VCO } \\ & \text { SW2 } \end{aligned}$		H center	\longrightarrow
$\begin{gathered} 0 \mathrm{C} \\ (\mathrm{C} 1 \mathrm{H}) \\ \hline \end{gathered}$	AFT offset SW	4			VIF VCO			\rightarrow

5) Contents of $\mathrm{I}^{2} \mathrm{C}$ bus control
(1) The control information is in the direction that the output increases when the datum increases.
(Example: Contrast $00 \rightarrow$ contrast min., $3 \mathrm{~F} \rightarrow$ max., brightness $00 \rightarrow$ pedestal level low, $7 \mathrm{~F} \rightarrow$ high)
(2) Supplement of other control
a. 00: Color

When data are 00 , the color becomes off since the chroma output is decreased completely .
b. 01: Tint

Data $00 \rightarrow$ Skin color tends to become reddish, 3F \rightarrow skin color tends to become greenish.
c. $04,05,06$: Cut off R, G, B

8-bit DAC
d. 07, 08: Driver R, B

7-bit DAC
e. 09: AFT offset adjustment

The DC offset of S-curve of AFT output is corrected.
Data $01 \rightarrow$ S-curve falls (DC voltage of center frequency drops).
Data FF \rightarrow S-curve rises.
It becomes AFT defeat mode when data 00, the voltage of AFT out (pin 30) becomes the value in accordance with the external resistor.
AFT changes over 8-bit DAC into 2 stages for variable range and improvement of precision for per 1-bit.
Example: In the case of AFT

Technical Information (continued)

- Explanation of each block (continued)

7. $\mathrm{I}^{2} \mathrm{C}$ bus (continued)
5) Contents of $I^{2} \mathrm{C}$ bus control (continued)
(2) Supplement of other control (continued)
f. 0A: RF AGC delay point adjustment

The same operation as when bias is applied from outside conventionally.
Data $00 \rightarrow$ DC-applied bias drops \rightarrow delay point rises
Data $3 \mathrm{~F} \rightarrow$ DC-applied bias drops \rightarrow delay point down
g. 0B: Video adjustment

Data $0^{*} \rightarrow$ detection output min. $7^{*} \rightarrow$ max. to be used for correcting the dispersion of detection output inside the IC.
h. 0B: Hor. screen image position

Data $* 0 \rightarrow$ screen image goes to the left $7 * \rightarrow$ screen image shifts to the right.
i. $0 \mathrm{C}: \mathrm{VCO}$ control

Fine control for the oscillation frequency of VCO ($1 / 2$ frequency of f_{P}) of VIF.
8. Supplementary explanation of SW operation

Data-bit	SW contents		Concrete contents	
00-D7	$\begin{aligned} & \text { PAL/NTSC mode SW } \\ & (0 \rightarrow \text { PAL }) \\ & (1 \rightarrow \text { NTSC }) \end{aligned}$		1) BGP width changeover (PAL: Wide) 2) CW changeover to killer (PAL: 90 deg./270 deg.) 3) Tint operation changeover (PAL: Tint off) 4) Ident operation changeover (PAL: With operation)	
00-D6	PAL, NTSC/SECAM mode SW ($1 \rightarrow$ forced SECAM) ($0 \rightarrow$ normal discrimination mode)		1) Demodulation output mode changeover. The color difference output terminal becomes high impedance at forced SECAM.	
01-D7	Ver. auto SW ($0 \rightarrow$ auto changeover) ($1 \rightarrow$ manual changeover)		1) Vertical frequency discrimination circuit changeover. Auto changeover: Automatic discrimination mode by internal counter. Manual changeover: Forcibly changeover $50 \mathrm{~Hz} / 60$ Hz by 02-D7 data.	
01-D6	Ver. TRG stop SW ($0 \rightarrow$ normal) ($1 \rightarrow$ trigger off)		1) Vertical trigger input inhibit SW. $1 \rightarrow$ trigger input-off is the mode to protect from the vertical dancing caused by noise at blue-back .	
02-D7	$\begin{aligned} & \text { Ver. OSC SW } \\ & (0 \rightarrow 50 \mathrm{~Hz}) \\ & (1 \rightarrow 60 \mathrm{~Hz}) \end{aligned}$		1) Vertical frequency changeover SW . Valid only when 01-D7 is 1.	
03-D7	SIF, external AV input changeover switch			
0B-D7	03-D7	0B-D7	Output signal	
	0	0	SIF1 (int.)	Power on time
	0	1	SIF2 (int.)	
	1	0	SIF3 (int.)	
	1	1	Ext. (video)	Int. is set at SIF1

Technical Information (continued)

- Explanation of each block (continued)

8. Supplementary explanation of SW operation (continued)

Application Circuit Example

[^0]: Note) $* 1$ to $* 9$: Refer to "Explanation of test methods".

