Features

- Comprehensive Library of Standard Logic and I/O Cells
- ATC18 Core and I/O Cells Designed to Operate with V_{DD} = 1.8V \pm 0.15V as Main Target Operating Conditions
- IO25 and IO33 Pad Libraries Provide Interfaces to 2.5V and 3V Environments
- Memory Cells Compiled to the Precise Requirements of the Design
- Compatible with Atmel's Extensive Range of Microcontroller, DSP, Standard-interface
 and Application-specific Cells

Description

The Atmel ATC18 CBIC family is fabricated on a proprietary 0.18 micron, up to sixlayer-metal CMOS process intended for use with a supply voltage of $1.8V \pm 0.15V$. The following table shows the range for which Atmel library cells have been characterized.

Symbol	Parameter Conditions		Min	Тур	Max	Unit
V _{DD}	DC Supply Voltage	Core and Standard I/Os	1.65	1.8	1.95	V
V _{DD2.5}	DC Supply Voltage	2.5V Interface I/Os	2.25	2.5	2.75	V
V _{DD3.3}	DC Supply Voltage	3V Interface I/Os	3	3.3	3.6	V
VI	DC Input Voltage		0		V _{DD}	V
Vo	DC Output Voltage		0		V_{DD}	V
TEMP	Operating Free Air Temperature Range	Industrial	-40		+85	°C

The Atmel cell libraries and megacell compilers have been designed in order to be compatible with each other. Simulation representations exist for three types of operating conditions. They correspond to three characterization conditions defined as follows:

MIN conditions:

 $T_J = -40^{\circ}C$

 V_{DD} (cell) = 1.95V

Process = fast (industrial best case)

- TYP conditions:
 - T_J = +25°C

 V_{DD} (cell) = 1.8V

Process = typ (industrial typical case)

MAX conditions:

 $T_J = +100^{\circ}C$ V_{DD} (cell) = 1.60V

Process = slow (industrial worst case)

Delays to tri-state are defined as delay to turn off (VGS < VT) of the driving devices. Output pad drain current corresponds to the output current of the pad when the output voltage is V_{OL} or V_{OH} . The output resistor of the pad and the voltage drop due to access resistors (in and out of the die) are taken into account. In order to have accurate timing estimates, all characterization has been run on electrical netlists extracted from the layout database.

ATC18

Summary

Rev. 1389AS-11/00

Standard Cell Library SClib

The Atmel Standard Cell Library, SClib, contains a comprehensive set of combinational logic and storage cells. The SClib library includes cells which belong to the following categories:

- Buffers and Gates
- Multiplexers
- Flip-flops
- Scan Flip-flops

- Latches
- Adders and Subtractors

Decoding the Cell Name

Table 2 shows the naming conventions for the cells in the SClib library. Each cell name begins with either a two-, three-, or four-letter code that defines the type of cell. This indicates the range of standard cells available.

Code	Description	Code	Description
AD	Adder	INVT	Inverting 3-State Buffer
АН	Half Adder	JK	JK Flip-Flop
AS	Adder/Subtractor	LA	D Latch
AN	AND Gate	МІ	Inverting Multiplexer
AOI	AND-OR-Invert Gate	MX	Multiplexer
AON	AND-OR-AND-Invert Gates	ND	NAND Gate
AOR	AND-OR Gate	NR	NOR Gate
вн	Bus Holder	OAI	OR-AND-Invert Gate
BUFB	Balanced Buffer	OAN	OR-AND-OR-Invert Gates
BUFF	Non-Inverting Buffer	OR	OR Gate
BUFT	Non-Inverting 3-State Buffer	ORA	OR-AND Gate
CG	Carry Generator	SD	Multiplexed Scan D Flip-Flop
CLK2	Clock Buffer	SE	Multiplexed Scan Enable D Flip-Flop
DE	D-Enabled Flip-Flop	SRLA	Set/Reset Latches with NAND input
DF	D Flip-Flop	SU	Subtractor
INV0	Inverter	XN	Exclusive NOR Gate
INVB	Balanced Inverter	XR	Exclusive OR Gate

Table 2. Cell Codes

2

ATC18 Summary

Cell Matrices

Table 3, Table 4 and Table 5 provide a quick reference to the storage elements in the SClib library. Note that all stor-

age elements feature buffered clock inputs and buffered output.

Table 3. JK Flip-Flops

Macro Name	Set	Clear	1xDrive	2xDrive
JKBRBx	•	•	•	•

Table 4. D Flip-Flops

Macro Name	Set	Clear	Enabled D Input	1xDrive	2xDrive	Single Output
DFBRBx	•	•		•	•	
DFCRBx		•		•	•	
DFCRQx		•		•	•	•
DFCRNx		•		•	•	
DFNRBx				•	•	
DFNRQx				•	•	•
DFPRBx	•			•	•	
DEPRQx	•		•	•	•	•
DENRQx			•	•	•	•
DENRBx			•	•	•	
DECRQx		•	•	•	•	•

Table 5. Scan Flip-flops

Macro Name	Set	Clear	1xDrive	2xDrive	Single Output
SDBRBx	•	•	•	•	
SDCRBx		•	•	•	
SDCRNx		•	•	•	•
SDCRQx		•	•	•	•
SDNRBx			•	•	
SDNRNx			•	•	•
SDNRQx			•	•	•
SDPRBx	•		•	•	
SECRQx		•	•	•	•
SENRQx			•	•	•
SEPRQx	•		•	•	•

Input/Output Pad Cell Libraries IO18lib, IO25lib and IO33lib

The Atmel Input/Output Cell Library, IO18lib, contains a comprehensive list of input, output, bidirectional and tristate cells. The ATC18 (1.8V) cell library includes two special sets of I/O cells, IO25lib and IO33lib, for interfacing with external 2.5V and 3.3V devices.

Voltage Levels

The IO18lib library is made up exclusively of low-voltage chip interface circuits powered by a voltage in the range of 1.65V to 1.95V. The library is compatible with the SClib 1.8-volt standard cells library.

Power and Ground Pads

Designers are strongly encouraged to provide three kinds of power pairs for the IO18lib library. These are "AC", "DC" and core power pairs. AC power is used by the I/O to switch its output from one state to the other. This switching generates noise in the AC power buses on the chip. DC power is used by the I/O to maintain its output in a steady state. The best noise performance is achieved when the DC power buses on the chip are free of noise; designers are encouraged to use separate power pairs for AC and DC power to prevent most of the noise in the AC power buses from reaching the DC power buses. The same power pairs can be used to supply both DC power to the I/Os and power to the core without affecting noise performance.

Table 6. VSS Power Pad Combinations

Core	Switching I/O	Quiet I/O		
Vssi	VssAC	VssDC	Library Cell Name	Signal Name
•			pv18i18	VDD
	•		pv18a18	VDD
		•	pv18d18	VDD
	•	•	pv18e18	VDD
•		•	pv18b18	VDD
•	•	•	pv18f18	VDD

 Table 7.
 VDD Power Pad Combinations

Core	Switching I/O	Quiet I/O		
Vssi	VssAC	VssDC	Library Cell Name	Signal Name
	•		pv18i18	VDD
		•	pv18a18	VDD
	•	•	pv18d18	VDD
•		•	pv18e18	VDD
•	•	•	pv18b18	VDD
	•		pv18f18	VDD

4

ATC18 Summary

Cell Matrices

Table 8. CMOS Pads

CMOS Cell Name	3-state I/O	Output Only	3-state Output Only	Drive Strength	Pad Sites Used
PC18B01	•			1x	1
PC18B02	•			2x	1
PC18B03	•			Зx	1
PC18B04	•			4x	1
PC18B05	•			5x	1
PC18001		•		1x	1
PC18002		•		2x	1
PC18003		•		Зx	1
PC18004		•		4x	1
PC18005		•		5x	1
PC18T01			•	1x	1
PC18T02			•	2x	1
PC18T03			•	Зx	1
PC18T04			•	4x	1
PC18T05			•	5x	1

Table 9. TTL Pads

TTL Cell Name	3-state I/O	Output Only	3-state Output Only	Drive Strength	Pad Sites Used
PT18B01	•			2 mA	1
PT18B02	•			4 mA	1
PT18B03	•			8 mA	1
PT18O01		•		2 mA	1
PT18O02		•		4 mA	1
PT18O03		•		8 mA	1
PT18T01			•	2 mA	1
PT18T02			•	4 mA	1
PT18T03			•	8 mA	1

Table 10. CMOS/TTL Input Only Pad

CMOS Cell Name	Input Levels	Schmitt Input Level Shifter	Non-inverting	Inverting	Pad Sites Used
PC18D01	CMOS		•		1
PC18D11	CMOS			•	1
PC18D21	CMOS	•	•		1
PC18D31	CMOS	•		•	1

Note: All 3-state I/Os, 3-state output only and input pads are also available with pull-up and pull-down device.

IO25lib and IO33lib Low Slew Rate Cells

The IO25lib (IO33lib) cells comprise a series of 1.8V/2.5V (1.8V/3.3V) input/output pads developed for low supply voltage processes in order to interface 1.8V ASICs to 2.5V (3.3V) environments.

All IO25lib (IO33lib) cells are slew rate controlled. Advantage has been taken of the 1.8V to 2.5V (3.3V) level shifter (slow by construction) to reduce the slew rate without reducing speed.

Table 11. IO25lib/IO33lib Pads

3V Interface Pad Name	3-state I/O	Output Only	3-state Output Only	Input Only	Drive Strength	Pad Sites Used
pc25b0x/pc33b0x	•				2 mA, 4 mA, 8 mA, 16 mA	1
pc25d00/pc33d00				•		1
pc25o0x/pc33o0x		•			2 mA, 4 mA, 8 mA, 16 mA	1
pc25t0x/pc33t0x			•		2 mA, 4 mA, 8 mA, 16 mA	1

Note: All 3-state I/Os, 3-state output only and input pads are also available with pull-up and pull-down devices.

Table 12. IO25lib/IO33lib Power Pads

	Power Bus Connection				Pad Sites
Cell Name	vssi	mixvssi	vddi	mixvdd	Used
pv25e00/pv33e00		•			1
pv25i00/pv33i00	•				1
pv25i25/pv33i25			•		1
pv25e33/pv33e33				•	1
pv25ecrn/pv33ecrn		•		•	2

6

Atmel Headquarters

Corporate Headquarters 2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600

Europe

Atmel SarL Route des Arsenaux 41 Casa Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Atmel Colorado Springs 1150 E. Chevenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759

Atmel Rousset

Zone Industrielle 13106 Rousset Cedex France TEL (33) 4-4253-6000 FAX (33) 4-4253-6001

Atmel Smart Card ICs

Scottish Enterprise Technology Park East Kilbride, Scotland G75 0QR TEL (44) 1355-803-000 FAX (44) 1355-242-743

Atmel Grenoble

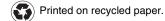
Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex France TEL (33) 4-7658-3000 FAX (33) 4-7658-3480

Fax-on-Demand North America: 1-(800) 292-8635 International:

1-(408) 441-0732

e-mail literature@atmel.com

Web Site http://www.atmel.com


BBS 1-(408) 436-4309

© Atmel Corporation 2000.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

Marks bearing [®] and/or [™] are registered trademarks and trademarks of Atmel Corporation.

Terms and product names in this document may be trademarks of others.

1389AS-11/00/0M