Features

- 3.0V to 5.5V Operating Range
- Advanced Low-voltage Electrically-erasable Programmable Logic Device
- User-controlled Power-down Pin Option
- Pin-controlled Standby Power (10 $\mu \mathrm{A}$ Typical)
- Well-suited for Battery Powered Systems
- 10 ns Maximum Propagation Delay
- CMOS and TTL Compatible Inputs and Outputs
- Latch Feature Hold Inputs to Previous Logic States
- Advanced Electrically-erasable Technology
- Reprogrammable
- 100\% Tested
- High-reliability CMOS Process
- 20 Year Data Retention
- 100 Erase/Write Cycles
- 2,000V ESD Protection
- 200 mA Latchup Immunity
- Commercial and Industrial Temperature Ranges
- Dual-in-line and Surface Mount Packages in Standard Pinouts
- Inputs are 5V Tolerant
- True Input Transition Detection "QZ" Version

Block Diagram

Pin Configurations

All Pinouts Top View

Pin Name	Function
CLK	Clock
IN	Logic Inputs
I/O	Bi-directional Buffers
VCC	(3V to 5.5V) Supply
PD	Programmable Power-down

PLCC

Note: For PLCC, pins $1,8,15$, and 22 can be left nect VCC to pin 1 and GND to 8,15 , and 22.

DIP/SOIC

High-
performance EE PLD

ATF22LV10C

See separate datasheet for ATF22LV10CQZ option.

Description

The ATF22LV10C is a high-performance CMOS (electrically-erasable) programmable logic device (PLD) that utilizes Atmel's proven electrically-erasable Flash memory technology. Speeds down to 10 ns and power dissipation as low as 10 mA are offered. All speed ranges are specified over the 3.0 V to 5.5 V range for industrial and commercial temperature ranges.

The ATF22LV10C provides a low-voltage and user controlled "zero" power CMOS PLD solution. A user-controlled power-down feature offers "zero" (5 mA typical) standby power. This feature allows the user to manage total system power to meet specific application requirements and enhance reliability, all without sacrificing speed. (The ATF22LV10CZ provides edge-sensing "zero" standby power (10 mA typical), as well as low voltage operation. See the ATF22LV10CZ datasheet.)
The ATF22LV10C is capable of operating at supply voltages down to 3.0 V . When the power-down pin is active, the device is placed into a zero standby power-down mode. When the power-down pin is not used or active, the device operates in a full power low voltage mode. Pin "keeper" circuits on input and output pins hold pins to their previous logic levels when idle, which eliminate static power consumed by pull-up resistors.

The ATF22LV10C macrocell incorporates a variable product term architecture. Each output is allocated from 8 to 16 product terms which allows highly-complex logic functions to be realized. Two additional product terms are included to provide synchronous reset and asynchronous reset. These additional product terms are common to all 10 registers and are automatically cleared upon power-up. Register preload simplifies testing. A security fuse prevents unauthorized copying of programmed fuse patterns.

Absolute Maximum Ratings*

Temperature Under Bias $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Voltage on Any Pin with
Respect to Ground-2.0V to $+7.0 \mathrm{~V}^{(1)}$
Voltage on Input Pins
with Respect to Ground
During Programming-2.0V to $+14.0 \mathrm{~V}^{(1)}$
Programming Voltage with
Respect to Ground-2.0V to $+14.0 \mathrm{~V}^{(1)}$
*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Note: Minimum voltage is -0.6 V DC, which may undershoot to 2.0V for pulses of less than 20 ns . Maximum output pin voltage is $\mathrm{V}_{\mathrm{CC}}+0.75 \mathrm{~V}$ DC, which may overshoot to 7.0 V for pulses of less than 20 ns .

DC and AC Operating Conditions

Commercial		Industrial
Operating Temperature (Ambient)	$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}$
V_{CC} Power Supply	$3.0 \mathrm{~V}-5.5 \mathrm{~V}$	$3.0 \mathrm{~V}-5.5 \mathrm{~V}$

Compiler Mode Selection

	PAL Mode (5828 Fuses)	GAL Mode (5892 Fuses)	Power-down Mode (5893 Fuses)
Synario	ATF22C10C (DIP)	ATF22C10C DIO (UES)	ATF22C10C DIP (PWD)
	ATF22V10C (PLCC)	ATF22V10C PLCC (UES)	ATF22C10V PLCC (PWD)
WINCUPL	P22V10	G22V10	G22V10CP
	P22V10LCC	G22V10LCC	G22V10CPLCC

Note: 1. These device types will create a JEDEC file which when programmed in an ATF22V10C device will enable the power-down mode feature. All other devices have this feature disabled.

Functional Logic Diagram Description

The functional logic diagram describes the ATF22LV10C architecture.
The ATF22LV10C has 12 inputs and 10 I/O macrocells. Each macrocell can be configured into one of four output configurations: active high/low, registered/combinatorial output.The universal architecture of the ATF22LV10C can be programmed to emulate most 24-pin PAL devices.

Unused product terms are automatically disabled by the compiler to decrease power consumption. A security fuse, when programmed, protects the contents of the ATF22LV10C. Eight bytes (64 fuses) of User Signature are accessible to the user for purposes such as storing project name, part number, revision or date. The User Signature is accessible regardless of the state of the security fuse.

DC Characteristics

Symbol	Parameter	Condition ${ }^{(2)}$		Min	Typ	Max	Units
$\mathrm{I}_{\text {IL }}$	Input or I/O Low Leakage Current	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}$ (Max)				-10	$\mu \mathrm{A}$
I_{H}	Input or I/O High Leakage Current	$\left(\mathrm{V}_{\mathrm{CC}}-0.2\right) \mathrm{V} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$				10	$\mu \mathrm{A}$
I_{CC}	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IN}}=\operatorname{Max}$ Outputs Open	Com. Ind.		$\begin{aligned} & 55 \\ & 60 \end{aligned}$	$\begin{aligned} & 85 \\ & 90 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\mathrm{CC} 2}$	Clocked Power Supply Current	$V_{C C}=M a x,$ Outputs Open, $\mathrm{f}=15 \mathrm{MHz}$	Com. Ind.			$\begin{aligned} & 100 \\ & 105 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {PD }}$	Power Supply Current, Power-down Mode	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max, } \\ & \mathrm{V}_{\mathrm{IN}}=0, \text { Outputs Open } \end{aligned}$	Com. Ind.		$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{OS}}{ }^{(1)}$	Output Short Circuit Current	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$				-130	mA
$V_{\text {IL }}$	Input Low Voltage			-0.5		0.8	V
V_{IH}	Input High Voltage			2.0		$\mathrm{V}_{\mathrm{CC}}+0.75$	V
V_{OL}	Output Low Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$				0.5	V
V_{OH}	Output High Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min} \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \end{aligned}$		2.4			V
V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$			V

Notes: 1. Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec.
2. For DC characteristics, the test condition of $\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ corresponds to 3.6 V .

AC Waveforms

AC Characteristics ${ }^{(1)}$

Symbol	Parameter	-10		-15		Units
		Min	Max	Min	Max	
$\mathrm{t}_{\text {PD }}$	Input or Feedback to Non-Registered Output	3	10	3	15	ns
t_{CF}	Clock to Feedback		5		8	ns
t_{CO}	Clock to Output	2	6.5	2	10	ns
t_{s}	Input or Feedback Setup Time	7.5		12		ns
t_{H}	Input Hold Time	0		0		ns
t_{p}	Clock Period	12		16		ns
t_{w}	Clock Width	6		8		ns
$\mathrm{f}_{\text {MAX }}$	External Feedback 1/($\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{CO}}$)		71.4		45.5	MHz
	Internal Feedback 1/($\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{CF}}$)		80		50	MHz
	No Feedback 1/(tp)		83.3		62.5	MHz
$t_{\text {EA }}$	Input to Output Enable	3	12	3	15	ns
t_{ER}	Input to Output Disable	2	12	2	15	ns
$\mathrm{t}_{\text {AP }}$	Input or I/O to Asynchronous Reset of Register	3	13	3	15	ns
$\mathrm{t}_{\text {SP }}$	Setup Time, Synchronous Preset	10		10		ns
$\mathrm{t}_{\text {AW }}$	Asychronous Reset Width	8		8		ns
$\mathrm{t}_{\text {AR }}$	Asychronous Reset Recovery Time	6		6		ns
$\mathrm{t}_{\text {SPR }}$	Synchronous Preset to Clock Recovery Time	10		10		ns

Note: 1. See ordering information for valid part numbers.

Power-down AC Characteristics

Symbol	Parameter	-10		-15		Units
		Min	Max	Min	Max	
$\mathrm{t}_{\text {IVDH }}$	Valid Input before PD High	10		15		ns
$\mathrm{t}_{\text {GVDH }}$	Valid $\overline{O E}$ before PD High	0		0		ns
$\mathrm{t}_{\text {CVDH }}$	Valid Clock before PD High	0		0		ns
$\mathrm{t}_{\text {DHIX }}$	Input Don't Care after PD High		10		15	ns
$\mathrm{t}_{\text {DHGX }}$	$\overline{\text { OE Don't Care after PD High }}$		10		15	ns
$\mathrm{t}_{\text {DHCX }}$	Clock Don't Care after PD High		10		15	ns
$\mathrm{t}_{\text {DLIV }}$	PD Low to Valid Input		10		15	ns
$\mathrm{t}_{\text {DLGV }}$	PD Low to Valid OE		25		30	ns
$\mathrm{t}_{\text {DLCV }}$	PD Low to Valid Clock		25		30	ns
$\mathrm{t}_{\text {DLOV }}$	PD Low to Valid Output		30		35	ns

Input Test Waveforms and Measurement Levels

$t_{R}, t_{F}<1.5 n s$

Output Test Loads

Note: Similar competitors devices are specified with slightly different loads. These load differences may affect output signals' delay and slew rate. Atmel devices are tested with sufficient margins to meet compatible device specification conditions.

Pin Capacitance

$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}^{(1)}$

Typ								Max	Units	Conditions
$\mathrm{C}_{\text {IN }}$	5	8	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$						
$\mathrm{C}_{\text {OUT }}$	6	8	pF	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$						

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

Power-up Reset

Preload of Register Outputs

The registers in the ATF22LV10C are designed to reset during power-up. At a point delayed slightly from V_{CC} crossing $\mathrm{V}_{\mathrm{RST}}$, all registers will be reset to the low state. The output state will depend on the polarity of the buffer.

This feature is critical for state machine initialization. However, due to the asynchronous nature of reset and the uncertainty of how V_{Cc} actually rises in the system, the following conditions are required:

1. The V_{CC} rise must be monotonic and start below 0.7 V .
2. The clock must remain stable during $T_{P R}$.
3. After $T_{P R}$, all input and feedback setup times must be met before driving the clock pin high.

The ATF22LV10C registers are provided with circuitry to allow loading of each register with either a high or a low. This feature will simplify testing since any state can be forced into the registers to control test sequencing. A JEDEC file with preload is generated when a source file with vectors is compiled. Once downloaded, the JEDEC file preload sequence will be done automatically by most of the approved programmers after the programming.

Electronic Signature Word

There are 64 bits of programmable memory that are always available to the user, even if the device is secured. These bits can be used for user-specific data.

A single fuse is provided to prevent unauthorized copying of the ATF22LV10C fuse patterns. Once programmed, fuse verify and preload are inhibited. However, the 64-bit User Signature remains accessible.

The security fuse should be programmed last, as its effect is immediate.

Programming/erasing is performed using standard PLD programmers. See CMOS PLD Programming Hardware \& Software Support for information on software/programming.

Parameter	Description	Typ	Max	Units
T_{PR}	Power-up Reset Time	600	1,000	ns
$\mathrm{~V}_{\text {RST }}$	Power-up Reset Voltage	2.5	3.0	V

All ATF22V10C family members have internal input and I/O pin-keeper circuits. Therefore, whenever inputs or I/Os are not being driven externally, they will maintain their last driven state. This ensures that all logic array inputs and device outputs are at known states. These are relatively weak active circuits that can be easily overridden by TTLcompatible drivers (see Input and I/O diagrams on page 8).

Power-down Mode

The ATF22LV10C includes an optional pin controlled power-down feature. When this mode is enabled, the PD pin acts as the power-down pin (Pin 4 on the DIP/SOIC packages and Pin 5 on the PLCC package). When the PD pin is high, the device supply current is reduced to less than 100 mA . During power-down, all output data and internal logic states are latched and held. Therefore, all registered and combinatorial output data remain valid. Any outputs which were in an undetermined state at the onset of powerdown will remain at the same state. During power-down, all input signals except the power-down pin are blocked. Input and I/O hold latches remain active to insure that pins do not float to indeterminate levels, further reducing system power. The power-down pin feature is enabled in the logic design file. Designs using the power-down pin may not use the PD pin logic array input. However, all other PD pin macrocell resources may still be used, including the buried feedback and foldback product term array inputs.
PD pin configuration is controlled by the design file, and appears as a separate fuse bit in the JEDEC file. When the power-down feature is not specified in the design file, the IN/PD pin will be configured as a regular logic input.
Note: Some programmers list the 22V10 JEDEC compatible 22V10C (no PD used) separately from the non-22V10 JEDEC compatible 22V10CEX (with PD used).

Input Diagram

I/O Diagram

Functional Logic Diagram ATF22LV10C

Note: 1. *Input not available if the power-down (PD) option is utilized.

ATF22LV10C OUTPUT SINK CURRENT VS.
SUPPLY VOLTAGE $\left(V_{O L}=0.5 \mathrm{~V}\right)$

ATF22LV10C NORMALIZED $I_{c C}$ VS. TEMP.

NORMALIZED $T_{P D}$ VS. $V_{C C}$

NORMALIZED $T_{P D}$ VS. TEMP

NORMALIZED $T_{\text {co }}$ VS. $V_{\text {Cc }}$

NORMALIZED T $s u$ VS. TEMP

22LV10C DELTA TPD VS. OUTPUT LOADING

ATF22LV10C DELTA TPD VS. NUMBER OF OUTPUT SWITCHING

22LV10C DELTA T ${ }_{\text {CO }}$ VS.
OUTPUT LOADING

ATF22LV10C DELTA $T_{\text {co }}$ VS. NUMBER OF OUTPUT SWITCHING

Ordering Information

$\begin{aligned} & \mathrm{t}_{\mathrm{PD}} \\ & \text { (ns) } \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathbf{s}} \\ (\mathrm{ns}) \end{gathered}$	$\begin{aligned} & \mathrm{t}_{\mathrm{co}} \\ & (\mathrm{~ns}) \end{aligned}$	Ordering Code	Package	Operation Range
10	7.5	7.5	ATF22LV10C-10JC ATF22LV10C-10PC ATF22LV10C-10SC ATF22LV10C-10XC	$\begin{aligned} & 28 \mathrm{~J} \\ & 24 \mathrm{P} 3 \\ & 24 \mathrm{~S} \\ & 24 \mathrm{X} \end{aligned}$	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
10	7.5	7.5	ATF22LV10C-10JI ATF22LV10C-10PI ATF22LV10C-10SI ATF22LV10C-10XI	$\begin{aligned} & 28 \mathrm{~J} \\ & 24 \mathrm{P} 3 \\ & 24 \mathrm{~S} \\ & 24 \mathrm{X} \end{aligned}$	$\begin{gathered} \text { Industrial } \\ \left(0^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$
15	12	10	ATF22LV10C-15JC ATF22LV10C-15PC ATF22LV10C-15SC ATF22LV10C-15XC	$\begin{aligned} & 28 \mathrm{~J} \\ & 24 \mathrm{P} 3 \\ & 24 \mathrm{~S} \\ & 24 \mathrm{X} \end{aligned}$	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
	12	10	ATF22LV10C-15JI ATF22LV10C-15PI ATF22LV10C-15SI ATF22LV10C-15XI	$\begin{aligned} & 28 \mathrm{~J} \\ & 24 \mathrm{P} 3 \\ & 24 \mathrm{~S} \\ & 24 \mathrm{X} \end{aligned}$	Industrial $\left(-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)$

Using "C" Product for Industrial

To use commercial product for industrial temperature ranges, simply de-rate $I_{C C}$ by 15% on the "C" device. No speed de-rating is necessary.

Package Type	
28 J	28-lead, Plastic J-leaded Chip Carrier (PLCC)
24 P 3	24-lead, 0.300" Wide, Plastic Dual In-line Package (PDIP)
24 S	24-lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)
24 X	24-lead, 4.4 mm Wide, Plastic Thin Shrink Small Outline (TSSOP)

Package Information

28J - PLCC

Notes: 1. This package conforms to JEDEC reference MS-018, Variation AB.
2. Dimensions D1 and E1 do not include mold protrusion.

Allowable protrusion is $.010 "(0.254 \mathrm{~mm})$ per side. Dimension D1 and E1 include mold mismatch and are measured at the extreme material condition at the upper or lower parting line.
3. Lead coplanarity is 0.004 " $(0.102 \mathrm{~mm})$ maximum.

COMMON DIMENSIONS
(Unit of Measure $=\mathrm{mm}$)

SYMBOL	MIN	NOM	MAX	NOTE
A	4.191	-	4.572	
A1	2.286	-	3.048	
A2	0.508	-	-	
D	12.319	-	12.573	
D1	11.430	-	11.582	Note 2
E	12.319	-	12.573	
E1	11.430	-	11.582	Note 2
D2/E2	9.906	-	10.922	
B	0.660	-	0.813	
B1	0.330	-	0.533	
e	1.270 TYP			

24P3 - PDIP

24X - TSSOP

Dimensions in Millimeter and (Inches)*
JEDEC STANDARD MO-153 AD
Controlling dimension: millimeters

04/11/2001

Atmel Headquarters
Corporate Headquarters
2325 Orchard Parkway
San Jose, CA 95131
USA
TEL 1(408) 441-0311
FAX 1(408) 487-2600

Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500

Asia

Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759
Scottish Enterprise Technology Park Maxwell Building
East Kilbride G750QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80

e-mail
literature@atmel.com
Web Site
http://www.atmel.com

© Atmel Corporation 2003.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ATMEL ${ }^{\oplus}$ is the registered trademark of Atmel.
Other terms and product names may be the trademarks of others.

