Features

- Utilizes the AVR ${ }^{\circledR}$ Enhanced RISC Architecture
- 121 Powerful Instructions - Most Single Clock Cycle Execution
- 128K bytes of In-System Reprogrammable Flash (ATmega103/L) 64K bytes of In-System Reprogrammable Falsh (ATmega603/L)
- Serial Interface for Program Downloading
- Endurance: 1,000 Write/Erase Cycles
- 4K bytes EEPROM (ATmega103/L)

2K bytes of EEPROM (ATmega603/L)

- Endurance: 100,000 Write/Erase Cycles
- 4K bytes Internal SRAM
- 32×8 General Purpose Working Registers + Peripheral Control Registers
- 32 Programmable I/O Lines, 8 Output Lines, 8 Input Lines
- Programmable Serial UART + SPI Serial Interface
- V_{CC} Supply
- 2.7-6.0V (ATmega603L/ATmega103L)
- 4.0-6.0V (ATmega603/ATmega103)
- Fully Static Operation
- 0-6 MHz (ATmega603/ATmega103)
- 0-4 MHz (ATmega603L/ATmega103L)
- Up to 6 MIPS Throughput at 6 MHz
- RTC with Separate Oscillator
- Two 8-Bit Timer/Counters with Separate Prescaler and PWM
- One 16-Bit Timer/Counter with Separate Prescaler, Compare, Capture Modes and Dual 8-, 9- or 10-Bit PWM
- Programmable Watchdog Timer with On-Chip Oscillator
- On-Chip Analog Comparator
- 8-Channel, 10-Bit ADC
- Low Power Idle, Power Save and Power Down Modes
- Software Selectable Clock Frequency
- Programming Lock for Software Security

Pin Configuration

TQFP

> ATmega603 ATmega603L ATmega103 ATmega103L Preliminary

Block Diagram

Figure 1. The ATmega603/103 Block Diagram

Description

The ATmega603/103 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega603/103 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
The AVR core is based on an enhanced RISC architecture that combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture
is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.
The ATmega603/103 provides the following features: 64K/128K bytes of In-system Programmable Flash, 2K/4K bytes EEPROM, 4K bytes SRAM, 32 general purpose I/O lines, 8 Input lines, 8 Output lines, 32 general purpose working registers, 4 flexible timer/counters with compare modes and PWM, UART, programmable Watchdog Timer with internal oscillator, an SPI serial port and three software selectable power saving modes. The Idle Mode stops the CPU while allowing the SRAM, timer/counters, SPI port and interrupt system to continue functioning. The Power Down mode saves the register contents but freezes the oscillator, disabling all other chip functions until the next

ATmega603/L and ATmega103/L

interrupt or hardware reset. In Power Save mode, the timer oscillator continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping.
The device is manufactured using Atmel's high-density non-volatile memory technology. The on-chip ISP Flash allows the program memory to be reprogrammed in-system through a serial interface or by a conventional nonvolatile memory programmer. By combining an 8 -bit RISC CPU with a large array of ISP Flash on a monolithic chip, the Atmel ATmega603/103 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.
The ATmega603/103 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

Comparison Between ATmega 603 and ATmega 103

The ATmega603 has 64 K bytes of Downloadable Flash, 2 K bytes of EEPROM, and 4 K bytes of internal SRAM. The ATmega603 does not have the ELPM instruction.
The ATmega103 has 128K bytes of Downloadable Flash, 4 K bytes of EEPROM, and 4 K bytes of internal SRAM. The ATmega103 has the ELPM instruction, necessary to reach the upper half of the Flash memory for constant table lookup.
Table 1 summarizes the different memory sizes for the two devices.
Table 1. Memory Size Summary

Part	Flash	EEPROM	SRAM
ATmega603	64 K bytes	2 K bytes	4 K bytes
ATmega103	128 K bytes	4 K bytes	4 K bytes

Pin Descriptions

VCC

Supply voltage

GND

Ground

Port A (PA7..PA0)

Port A is an 8-bit bi-directional I/O port. Port pins can provide internal pull-up resistors (selected for each bit). The Port A output buffers can sink 20 mA and can drive LED displays directly. When pins PA0 to PA7 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated.
Port A serves as Multiplexed Address/Data bus when using external SRAM.

Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O pins with internal pull-up resistors. The Port B output buffers can sink 20 mA . As inputs, Port B pins that are externally pulled low, will source current if the pull-up resistors are activated.
Port B also serves the functions of various special features.

Port C (PC7..PC0)

Port C is an 8-bit Output port. The Port C output buffers can sink 20 mA .
Port C also serves as Address output when using external SRAM.

Port D (PD7..PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors. The Port D output buffers can sink 20 mA . As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated.
Port D also serves the functions of various special features.

Port E (PE7..PE0)

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors. The Port E output buffers can sink 20 mA . As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated.
Port E also serves the functions of various special features.

Port F (PF7..PF0)

Port F is an 8 -bit Input port. Port F also serves as the analog inputs for the ADC.

RESET

input. A low on this pin for two machine cycles while the oscillator is running resets the device.

XTAL1

Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

XTAL2

Output from the inverting oscillator amplifier

TOSC1

Input to the inverting Timer/Counter oscillator amplifier
TOSC2
Output from the inverting Timer/Counter oscillator amplifier
$\overline{W R}$
External SRAM Write Strobe.
RD
External SRAM Read Strobe.

ALE

ALE is the Address Latch Enable used when the External Memory is enabled. The ALE strobe is used to latch the low-order address (8 bits) into an address latch during the first access cycle, and the AD0-7 pins are used for data during the second access cycle.

AVCC

This is the supply voltage to the A/D Converter. It should be externally connected to V_{CC} via a low-pass filter. See page 52 for details on operation of the ADC.

AREF

This is the analog reference input for the ADC converter. For ADC operations, a voltage in the range AGND to AVCC must be applied to this pin.

AGND

If the board has a separate analog ground plane, this pin should be connected to this ground plane. Otherwise, connect to GND.

PEN

This is a programming enable pin for the low-voltage serial programming mode. By holding this pin low during a poweron reset, the device will enter the serial programming mode.

Crystal Oscillator

XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 2. Either a quartz crystal or a ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left unconnected while XTAL1 is driven as shown in Figure 3. For the Timer Oscillator pins, OSC1 and OSC2, the crystal is connected directly between the pins. No external capacitors are needed. The oscillator is optimized for use with a $32,768 \mathrm{~Hz}$ watch crystal. An external clock signal applied to this pin goes through the same amplifier having a bandwidth of 256 kHz . The external clock signal should therefore be in the interval $0 \mathrm{~Hz}-256 \mathrm{kHz}$.

Figure 2. Oscillator Connections

Figure 3. External Clock Drive Configuration

ATmega603/103 Architectural Overview

The fast-access register file contains 32×8-bit general purpose working registers with a single clock cycle access time. This means that during one single clock cycle, one ALU (Arithmetic Logic Unit) operation is executed. Two operands are output from the register file, the operation is executed, and the result is stored back in the register file in one clock cycle.
Six of the 32 registers can be used as three 16 -bit indirect address register pointers for Data Space addressing enabling efficient address calculations. One of the three address pointers is also used as the address pointer for the constant table look up function. These added function registers are the 16 -bit X -register, Y -register and Z -register.
The ALU supports arithmetic and logic functions between registers or between a constant and a register. Single register operations are also executed in the ALU. Figure 4 shows the ATmega603/103 AVR Enhanced RISC microcontroller architecture.
In addition to the register operation, the conventional memory addressing modes can be used on the register file as well. This is enabled by the fact that the register file is assigned the 32 lowermost Data Space addresses, allowing them to be accessed as though they were ordinary memory locations.
The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, Timer/Counters, A/D-converters, and other I/O functions. The I/O Memory can be accessed directly, or as the Data Space locations following those of the register file, \$20-\$5F.

Figure 4. The ATmega603/103 AVR Enhanced RISC Architecture
AVR ATmega103 Architecture

The AVR uses a Harvard architecture concept - with separate memories and buses for program and data. The program memory is executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is in-system programmable Flash memory. With a few exceptions, AVR instructions have a single 16 -bit word format, meaning that every program memory address contains a single 16 -bit instruction.
During interrupts and subroutine calls, the return address program counter (PC) is stored on the stack. The stack is effectively allocated in the general data SRAM, and consequently the stack size is only limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the reset routine (before subroutines or interrupts are executed). The 16 -bit stack pointer SP is read/write accessible in the I/O space.
The 4000 bytes data SRAM can be easily accessed through the five different addressing modes supported in the AVR architecture.

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the status register. All the different interrupts have a separate interrupt vector in the interrupt vector table at the beginning of the program memory. The different interrupts have priority in accordance with their interrupt vector position. The lower the interrupt vector address, the higher the priority.
The memory spaces in the AVR architecture are all linear and regular memory maps.

ATmega603/103 Register Summary

Address	Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Page
\$3F (\$5F)	SREG	1	T	H	S	V	N	Z	C	page 14
\$3E (\$5E)	SPH	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	page 14
\$3D (\$5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	page 14
\$3C (\$5C)	XDIV	XDIVEN	XDIV6	XDIV5	XDIV4	XDIV3	XDIV2	XDIV1	XDIV0	page 16
\$3B (\$5B)	RAMPZ	-	-	-	-	-	-	-	RAMPZ0	page 15
\$3A (\$5A)	EICR	ISC71	ISC70	ISC61	ISC60	ISC51	ISC50	ISC41	ISC40	page 23
\$39 (\$59)	EIMSK	INT7	INT6	INT5	INT4	INT3	INT2	INT1	INT0	page 22
\$38 (\$58)	EIFR	INTF7	INTF6	INTF5	INTF4	-	-	-	-	page 22
\$37 (\$57)	TIMSK	OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	OCIE0	TOIE0	page 23
\$36 (\$56)	TIFR	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOV1	OCFO	TOV0	page 24
\$35 (\$55)	MCUCR	SRE	SRW	SE	SM1	SM0	-	-	-	page 15
\$34 (\$54)	MCUSR	-	-	-	-	-	-	EXTRF	PORF	page 21
\$33 (\$53)	TCCR0	-	PWM0	COM01	COM00	CTC0	CS02	CS01	CSOO	page 28
\$32 (\$52)	TCNT0	Timer/Counter0 (8 Bit)	(8 Bit)							page 30
\$31 (\$51)	OCR0	Timer/Counter0 Output Compare Register								page 30
\$30 (\$50)	ASSR	-	-	-	-	AS0	TCNOUB	OCROUB	TCROUB	page 32
\$2F (\$4F)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	PWM11	PWM10	page 34
\$2E (\$4E)	TCCR1B	ICNC1	ICES1	-	-	CTC1	CS12	CS11	CS10	page 36
\$2D (\$4D)	TCNT1H	Timer/Counter1 - Counter Register High Byte								page 36
\$2C (\$4C)	TCNT1L	Timer/Counter1-Counter Register Low Byte								page 36
\$2B (\$4B)	OCR1AH	Timer/Counter1 - Output Compare Register A High Byte								page 36
\$2A (\$4A)	OCR1AL	Timer/Counter1 - Output Compare Register A Low Byte								page 36
\$29 (\$49)	OCR1BH	Timer/Counter1 - Output Compare Register B High Byte								page 36
\$28 (\$48)	OCR1BL	Timer/Counter1 - Output Compare Register B Low Byte								page 36
\$27 (\$47)	ICR1H	Timer/Counter1 - Input Capture Register High Byte								page 37
\$26 (\$46)	ICR1L	Timer/Counter1 - Input Capture Register Low Byte								page 37
\$25 (\$45)	TCCR2	-	PWM2	COM21	COM20	CTC2	CS22	CS21	CS20	page 28
\$24 (\$44)	TCNT2	Timer/Counter2 (8 Bit)								page 30
\$23 (\$43)	OCR2	Timer/Counter2 Output Compare Register								page 30
\$21 (\$47)	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	page 39
\$1F (\$3F)	EEARH	-	-	-	-	EEAR11	EEAR10	EEAR9	EEAR8	page 40
\$1E (\$3E)	EEARL	EEPROM Address Register L								page 40
\$1D (\$3D)	EEDR	EEPROM Data Register								page 40
\$1C (\$3C)	EECR	-	-	-	-	EERIE	EEMWE	EEWE	EERE	page 40
\$1B (\$3B)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	page 56
\$1A (\$3A)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	page 56
\$19 (\$39)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINAO	page 56
\$18(\$38)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 58
\$17 (\$37)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	page 58
\$16 (\$36)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	page 58
\$15 (\$35)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	page 63
\$12 (\$32)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	page 64
\$11 (\$31)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	page 64
\$10 (\$30)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	page 64
\$0F (\$2F)	SPDR	SPI Data Register								page 45
\$0E (\$2E)	SPSR	SPIF	WCOL	-	-	-	-	-	-	page 45
\$0D (\$2D)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	page 44
\$0C (\$2C)	UDR	UART I/O Data Register								page 48
\$0B (\$2B)	USR	RXC	TXC	UDRE	FE	OR	-	-	-	page 48
\$0A (\$2A)	UCR	RXCIE	TXCIE	UDRIE	RXEN	TXEN	CHR9	RXB8	TXB8	page 49
\$09 (\$29)	UBRR	UART Baud Rate Register								page 50
\$08 (\$28)	ACSR	ACD	-	ACO	ACI	ACIE	ACIC	ACIS1	ACISO	page 51
\$07 (\$27)	ADMUX	-	-	-	-	-	MUX2	MUX1	MUX0	page 53
\$06 (\$26)	ADCSR	ADES	ABSY	ADRF	ADIF	ADIE	ADPS2	ADPS1	ADPS0	page 53
\$05 (\$25)	ADCH	-	-	-	-	-	-	ADC9	ADC8	page 54
\$04 (\$24)	ADCL	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	page 54
\$03 (\$23)	PORTE	PORTE7	PORTE6	PORTE5	PORTE4	PORTE3	PORTE2	PORTE1	PORTE0	page 67
\$02 (\$22)	DDRE	DDE7	DDE6	DDE5	DDE4	DDE3	DDE2	DDE1	DDE0	page 67
\$01 (\$21)	PINE	PINE7	PINE6	PINE5	PINE4	PINE3	PINE2	PINE1	PINE0	page 67
\$00 (\$20)	PINF	PINF7	PINF6	PINF5	PINF4	PINF3	PINF2	PINF1	PINF0	page 71

ATmega603/103 Instruction Set Summary (Continued)
DATA TRANSFER INSTRUCTIONS

DATA TRANSFER INSTRUCTIONS					
ELPM ${ }^{0}$		Extended Load Program Memory	R0 $\leftarrow(\mathrm{Z}+\mathrm{RAMPZ})$	None	3
MOV	Rd, Rr	Move Between Registers	$\mathrm{Rd} \leftarrow \mathrm{Rr}$	None	1
LDI	Rd, K	Load Immediate	$\mathrm{Rd} \leftarrow \mathrm{K}$	None	1
LD	Rd, X	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, $\mathrm{X}+$	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{X}), \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow \mathrm{X}-1, \mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, Y	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Y})$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Y}), \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$\mathrm{Y} \leftarrow \mathrm{Y}-1, \mathrm{Rd} \leftarrow(\mathrm{Y})$	None	2
LDD	$\mathrm{Rd}, \mathrm{Y}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Y}+\mathrm{q})$	None	2
LD	Rd, Z	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LD	Rd, Z_{+}	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1, \mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LDD	Rd, $\mathrm{Z}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Z}+\mathrm{q})$	None	2
LDS	Rd, k	Load Direct from SRAM	$\mathrm{Rd} \leftarrow(\mathrm{k})$	None	2
ST	X, Rr	Store Indirect	$(\mathrm{X}) \leftarrow \mathrm{Rr}$	None	2
ST	X + , Rr	Store Indirect and Post-Inc.	$(\mathrm{X}) \leftarrow \mathrm{Rr}, \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$\mathrm{X} \leftarrow \mathrm{X}-1, \mathrm{X}) \leftarrow \mathrm{Rr}$	None	2
ST	Y, Rr	Store Indirect	$(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(\mathrm{Y}) \leftarrow \mathrm{Rr}, \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
ST	- Y , Rr	Store Indirect and Pre-Dec.	$\mathrm{Y} \leftarrow \mathrm{Y}-1, \mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
STD	$\mathrm{Y}+\mathrm{q}, \mathrm{Rr}$	Store Indirect with Displacement	$(\mathrm{Y}+\mathrm{q}) \leftarrow \mathrm{Rr}$	None	2
ST	Z, Rr	Store Indirect	$(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	(Z) $\leftarrow \mathrm{Rr}, \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1, \mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
STD	Z $+\mathrm{q}, \mathrm{Rr}$	Store Indirect with Displacement	$(\mathrm{Z}+\mathrm{q}) \leftarrow \mathrm{Rr}$	None	2
STS	k, Rr	Store Direct to SRAM	$(\mathrm{k}) \leftarrow \mathrm{Rr}$	None	2
LPM		Load Program Memory	$\mathrm{R} 0 \leftarrow(\mathrm{Z})$	None	3
IN	Rd, P	In Port	$\mathrm{Rd} \leftarrow \mathrm{P}$	None	1
OUT	P, Rr	Out Port	$\mathrm{P} \leftarrow \mathrm{Rr}$	None	1
PUSH	Rr	Push Register on Stack	STACK $\leftarrow \mathrm{Rr}$	None	2
POP	Rd	Pop Register from Stack	$\mathrm{Rd} \leftarrow$ STACK	None	2
BIT AND BIT-TEST INSTRUCTIONS					
SBI	P,b	Set Bit in I/O Register	$\mathrm{l} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 1$	None	2
CBI	P, b	Clear Bit in I/O Register	$\mathrm{l} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$\operatorname{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{Rd}(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$\operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \operatorname{Rd}(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$\operatorname{Rd}(0) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{C} \leftarrow \operatorname{Rd}(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$\mathrm{Rd}(7) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{C} \leftarrow \operatorname{Rd}(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$\operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{n}=0 . .6$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$\operatorname{Rd}(3.0) \leftarrow \operatorname{Rd}(7.4), \operatorname{Rd}(7 . .4) \leftarrow \operatorname{Rd}(3.0)$	None	1
BSET	s	Flag Set	SREG(s) $\leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) $\leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$\mathrm{T} \leftarrow \operatorname{Rr}(\mathrm{b})$	T	1
BLD	Rd, b	Bit load from T to Register	$\mathrm{Rd}(\mathrm{b}) \leftarrow \mathrm{T}$	None	1
SEC		Set Carry	$\mathrm{C} \leftarrow 1$	C	1
CLC		Clear Carry	$\mathrm{C} \leftarrow 0$	C	1
SEN		Set Negative Flag	$N \leftarrow 1$	N	1
CLN		Clear Negative Flag	$N \leftarrow 0$	N	1
SEZ		Set Zero Flag	$\mathrm{Z} \leftarrow 1$	Z	1
CLZ		Clear Zero Flag	$\mathrm{Z} \leftarrow 0$	Z	1
SEI		Global Interrupt Enable	$1 \leftarrow 1$	I	1
CLI		Global Interrupt Disable	$1 \leftarrow 0$	I	1
SES		Set Signed Test Flag	$\mathrm{S} \leftarrow 1$	S	1
CLS		Clear Signed Test Flag	$\mathrm{S} \leftarrow 0$	S	1
SEV		Set Twos Complement Overflow.	$\mathrm{V} \leftarrow 1$	V	1
CLV		Clear Twos Complement Overflow	$\mathrm{V} \leftarrow 0$	V	1
SET		Set T in SREG	$\mathrm{T} \leftarrow 1$	T	1
CLT		Clear T in SREG	$\mathrm{T} \leftarrow 0$	T	1
SEH		Set Half Carry Flag in SREG	$\mathrm{H} \leftarrow 1$	H	1
CLH		Clear Half Carry Flag in SREG	$\mathrm{H} \leftarrow 0$	H	1
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	3
WDR		Watchdog Reset	(see specific descr. for WD timer)	None	1

Ordering Information

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
4	2.7-6.0V	ATmega603L-4AC	64A	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
		ATmega603L-4AI	64A	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$
6	4.0-6.0V	ATmega603-6AC	64A	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
		ATmega603-6AI	64A	Industrial ($-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)
4	2.7-6.0V	ATmega103L-4AC	64A	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$)
		ATmega103L-4AI	64A	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$
6	4.0-6.0V	ATmega103-6AC	64A	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
		ATmega103-6AI	64A	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}\right) \end{gathered}$

Packaging Information

64A, 64-Lead, Very Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (VQFP) Dimensions in Millimeters and (Inches)* *Controlling dimension: millimeters	

