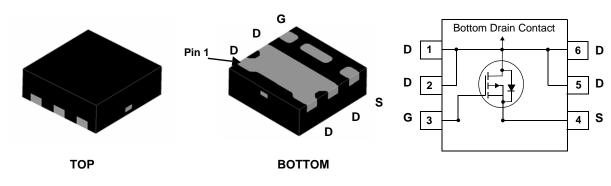


FDME905PT P-Channel PowerTrench[®] MOSFET -12 V, -8 A, 22 mΩ

Features


- Max $r_{DS(on)}$ = 22 m Ω at V_{GS} = -4.5 V, I_D = -8 A
- Max $r_{DS(on)}$ = 26 m Ω at V_{GS} = -2.5 V, I_D = -7.3 A
- Max $r_{DS(on)}$ = 97 m Ω at V_{GS} = -1.8 V, I_D = -3.8 A
- Low profile: 0.55 mm maximum in the new package MicroFET 1.6x1.6 Thin
- Free from halogenated compounds and antimony oxides
- RoHS Compliant

General Description

This device is designed specifically for battery charging or load switching in cellular handset and other ultraportable applications. It features a MOSFET with low on-state resistance.

The MicroFET 1.6x1.6 **Thin** package offers exceptional thermal performance for its physical size and is well suited to switching and linear mode applications.

MicroFET 1.6x1.6 Thin

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			-12	V	
V _{GS}	Gate to Source Voltage			±8	V	
I _D	Drain Current -Continuous	T _A = 25 °C	(Note 1a)	-8	•	
	-Pulsed		-30	Α		
D	Power Dissipation	T _A = 25 °C	(Note 1a)	2.1	W	
P _D	Power Dissipation	T _A = 25 °C	(Note 1b)	0.7		
T _J , T _{STG}	Operating and Storage Junction Temp	erature Range		-55 to +150	°C	

Thermal Characteristics

$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case		4.5	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	60	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1b)	175	

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
E95	FDME905PT	MicroFET 1.6x1.6 Thin	7 "	8 mm	5000 units

November 2011

	· —
	FDME905PT P-Channel PowerTrench [®] MOSF
	PΤ
	P-C
_	har
	nne
	l Pc
	owe
_	rTre
	enc
_	h [®] I
	MO
7	SFE
	4

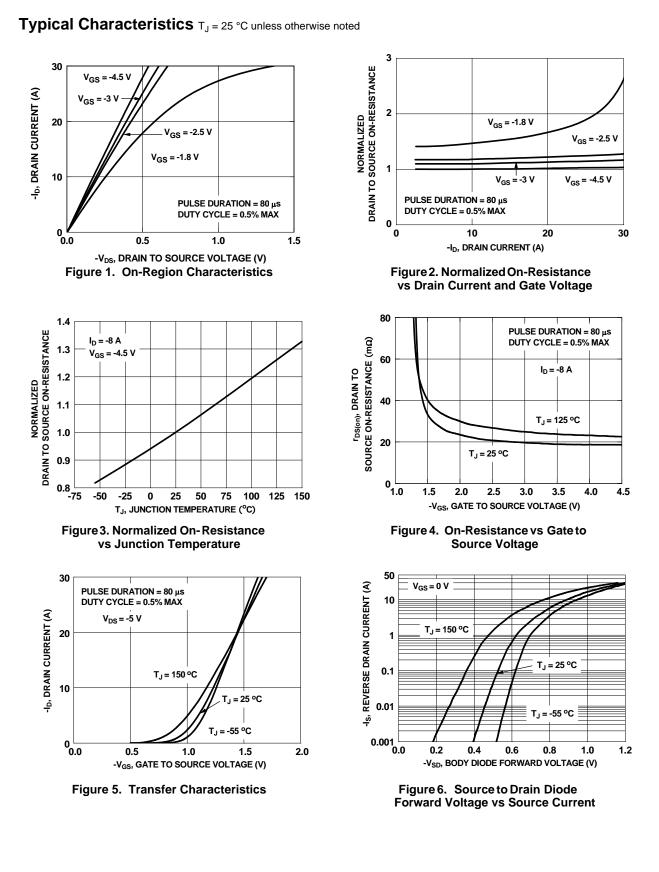
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = -250 \ \mu A, \ V_{GS} = 0 \ V$	-12			V		
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = -250 µA, referenced to 25 °C		-8.7		mV/°		
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -9.6 V, V_{GS} = 0 V$			-1	μA		
I _{GSS}	Gate to Source Leakage Current				±100	nA		
	acteristics			-1	1	1		
		V V I 250 ··· A	-0.4	-0.7	-1.0	V		
V _{GS(th)}	Gate to Source Threshold Voltage Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = -250 \ \mu A$	-0.4	-0.7	-1.0	v		
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Temperature Coefficient	$I_D = -250 \ \mu\text{A}$, referenced to 25 °C		2.5		mV/°		
		$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -8 \text{ A}$		18	22	$ _ $		
r _{DS(on)}	Drain to Source On Resistance	V_{GS} = -2.5 V, I_D = -7.3 A		22	26	mΩ		
03(01)		$V_{GS} = -1.8 \text{ V}, I_D = -3.8 \text{ A}$		28	97			
		V_{GS} = -4.5 V, I_D = -8 A, T_J = 125 °C		23	32			
9 _{FS}	Forward Transconductance	$V_{DS} = -5 V, I_{D} = -8 A$		38		S		
Dvnamic	Characteristics							
C _{iss}	Input Capacitance			1740	2315	pF		
C _{iss} C _{oss}	Output Capacitance	$V_{DS} = -6 V, V_{GS} = 0 V,$		350	525	pF		
	Reverse Transfer Capacitance	f = 1 MHz		311	465	pr		
C _{rss}	Reverse Transfer Capacitance			311	400	рг		
Switchin	g Characteristics							
t _{d(on)}	Turn-On Delay Time			9.5	19	ns		
t _r	Rise Time	V _{DD} = -6 V, I _D = -8 A,		8	16	ns		
t _{d(off)}	Turn-Off Delay Time	$V_{DD} = -6 \text{ V}, \text{I}_{D} = -6 \text{ A},$ $V_{GS} = -4.5 \text{ V}, \text{R}_{\text{GEN}} = 6 \Omega$		90	144	ns		
t _f	Fall Time			42	67	ns		
Q _q	Total Gate Charge	+		14	20	nC		
Q _{gs}	Gate to Source Gate Charge	$V_{DD} = -6 V, I_D = -8 A,$		2.4	20	nC		
Q _{gd}	Gate to Drain "Miller" Charge	V _{GS} = -4.5 V		3		nC		
				Ū				
Drain-So	urce Diode Characteristics							
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = -8 A$ (Note 2)		-0.8	-1.2	v		
V SD	Source to Brain Blode Torward Voltage	$V_{GS} = 0 V, I_S = -1.8 A$ (Note 2)		-0.7	-1.2	v		
t _{rr}	Reverse Recovery Time	$I_{-} = 8 \wedge di/dt = 100 \wedge lus$		17	31	ns		
Q _{rr}	Reverse Recovery Charge	- I _F = -8 A, di/dt = 100 A/μs		4.5	10	nC		
Notes:	mined with the device mounted on a 1 in ² pad 2 oz copper pa	l d on a 1.5 x 1.5 in. board of FR-4 material. $R_{ ext{ ext{ ilde{H}}}C}$ is gr	uaranteed b			_		
	a. 60 °C/W when mounte a 1 in ² pad of 2 oz co			W when mour n pad of 2 oz				
	00000	 88888						
	Pulse Width < 300 μ s, Duty cycle < 2.0 %.							
2. Pulse Test: F								
2. Pulse Test: F								

Test Conditions

Min

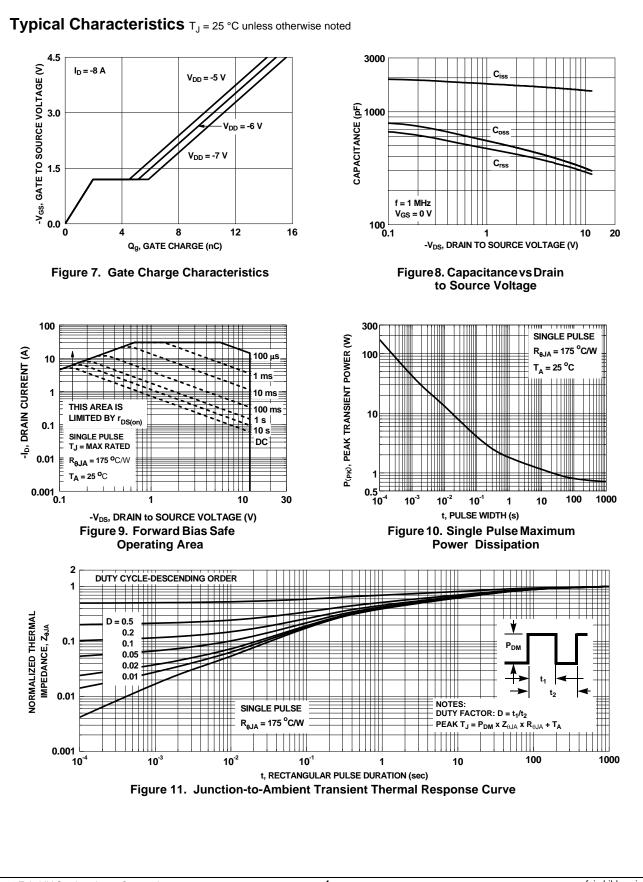
Тур

Max


Units

Electrical Characteristics T_J = 25 °C unless otherwise noted

Parameter


Symbol

FDME905PT P-Channel PowerTrench[®] MOSFET

©2011 Fairchild Semiconductor Corporation FDME905PT Rev.C2

www.fairchildsemi.com

FDME905PT P-Channel PowerTrench[®] MOSFET

Dimensional Outline and Pad Layout 0.65 -0.15 ---0.35 ____0,10_C A 1.60 No vlas or traces 2X 0.30 В allowed In this area 0,55 1.60 1.90 ł 0,40 ○ 0.10 C ŧ 2X 1 PIN #1 IDENT - 0.50 -1 TOP VIEW **RECOMMENDED LAND PATTERN OPT 1** 0,65 -0.15 ---0.35 -0.20 0.55 MAX No vlas or traces // 0.10 C 0.30 (0,15) allowed In this area C 0.05 0.00 0.62 0.55 1,90 SIDE VIEW Þ (0.40) 1 3 0.50 -**RECOMMENDED LAND PATTERN OPT 2** (0.125) (0.40) (0.20)0,72 NOTES: 0,62 0.30_{2X} A. DOES NOT FULLY CONFORM TO JEDEC 0.20 REGISTRATION B. DIMENSIONS ARE IN MILLIMETERS. 1,150 0.670 0.570 C. DIMENSIONS AND TOLERANCES PER (0.55) 1.050 ASME Y14.5M, 1994. TTT ł ł D. LAND PATTERN RECOMMENDATION IS 6 0.30 0.20 2X BASED ON FSC DESIGN ONLY 0,50 0,10M C A B ф 1,00 0,05M C BOTTOM VIEW

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

2Cool™ AccuPower™ Auto-SPM™ AX-CAP™* BitSiC® Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED® Dual Cool™ EcoSPARK[®] EfficentMax™ ESBC™

Fairchild Semiconductor®

FACT Quiet Series™ FACT[®]

FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ G*max*™ GTO™ IntelliMAX™ ISOPLANAR™ Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ Motion-SPM™ mWSaver™ OptoHiT™ **OPTOLOGIC**®

FPS™

F-PFS™

ര PowerTrench[®] PowerXS™ Programmable Active Droop™ OFFT QS™ Quiet Series™ RapidConfigure™ тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS® SyncFET™

bwer p franchise TinyBoost™ TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* uSerDes™ μ SerDes UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ VoltagePlus™ XS™

The Power Franchise®

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

OPTOPLANAR[®]

DISCLAIMER

Ŧ

Fairchild®

FAST®

FastvCore™

FETBench™

FlashWriter[®] *

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

Sync-Lock™

GENERAL ®*

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
•		Rev. Id