

3.3V CMOS 16-BIT IDT7 BUS TRANSCEIVER WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O AND BUS-HOLD

IDT74LVCH16245A

FEATURES:

- Typical tsk(0) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015;
 > 200V using machine model (C = 200pF, R = 0)
- 0.635mm pitch SSOP, 0.50mm pitch TSSOP and 0.40mm pitch TVSOP packages
- Extended commercial range of -40°C to +85°C
- Vcc = 3.3V ±0.3V, Normal Range
- VCC = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4µW typ. static)
- All inputs, outputs and I/O are 5 Volt tolerant
- Supports hot insertion

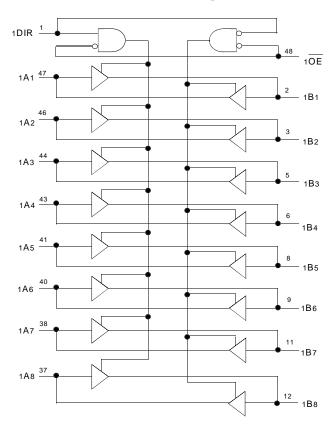
Drive Features for LVCH16245A:

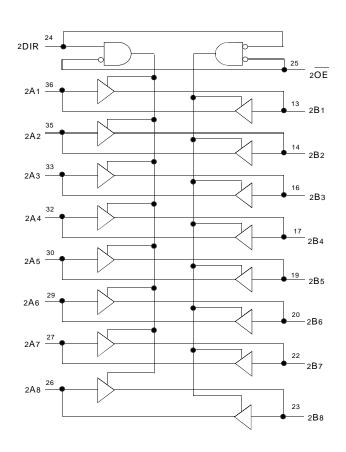
- High Output Drivers: ±24 mA
- Reduced system switching noise

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

DESCRIPTION:

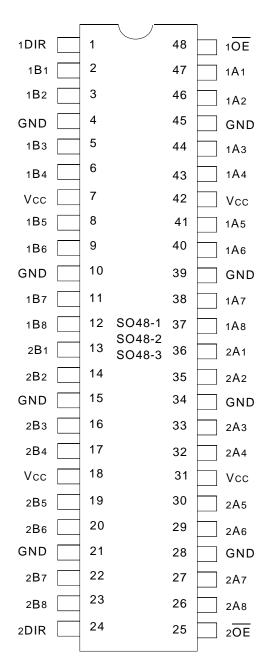

This 16-bit bus transceiver is built using advanced dual metal CMOS technology. This high-speed, low power transceiver is ideal for asynchronous communication between two busses (A and B). The Direction and Output Enable controls are designed to operate this device as either two independent 8-bit transceivers or one 16-bit transceiver. The direction control pin (DIR) controls the direction of data flow. The output enable pin (\overline{OE}) overrides the direction control and disables both ports. All inputs are designed with hysteresis for improved noise margin.


All pins can be driven from either 3.3V or 5V devices. This feature allows the use of this device as a translator in a mixed 3.3V/5V supply system.

The LVCH16245A has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

The LVCH16245A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

Functional Block Diagram



EXTENDED COMMERCIAL TEMPERATURE RANGE

MARCH 1999

PIN CONFIGURATION

SSOP/ TSSOP/ TVSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Description	Max.	Unit
VTERM(2)	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
V _{TERM} (3)	Terminal Voltage with Respect to GND	- 0.5 to +6.5	V
Tstg	Storage Temperature	- 65 to +150	°C
Іоит	DC Output Current	- 50 to +50	mA
lıĸ	Continuous Clamp Current,	- 50	mA
Іок	VI < 0 or Vo < 0		
Icc	Continuous Current through	±100	mA
Iss	each Vcc or GND		
		•	LVC Link

NOTES:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
Cin	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	pF
Ci/o	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description
х ОЕ	Output Enable Input (Active LOW)
xDIR	Direction Control Input
xAx	Side A Inputs or 3-State Outputs (1)
хВх	Side B Inputs or 3-State Outputs (1)

NOTE:

 These pins have "Bus-hold". All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLE (each 8-bit section) (1)

Inputs		
х <mark>ОЕ</mark>	xDIR	Outputs
L	L	B Data to A Bus
L	Н	A Data to B Bus
Н	Х	Isolation

NOTE:

H = HIGH Voltage Level
 L = LOW Voltage Level
 X = Don't Care

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

Symbol	Parameter		Test Conditions	Min.	Typ. ⁽¹⁾	Max.	Unit
ViH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		_	_	0.7	V
		Vcc = 2.7V to 3.6V		_	_	0.8	
lin	Input Leakage Current	Vcc = 3.6V	VI = 0 to 5.5V	_	_	±5	μA
lıL		N 0 (N				10	
lozh	High Impedance Output Current	$V_{CC} = 3.6V$	$V_0 = 0 \text{ to } 5.5V$	_	_	±10	μA
lozl	(3-State Output pins)						
loff	Input/Output Power Off Leakage	Vcc = 0V, Vin or Vo ≤	5.5V	_	_	±50	μA
Vik	Clamp Diode Voltage	VCC = 2.3V, IIN = - 18	Vcc = 2.3V, lin = - 18mA		- 0.7	- 1.2	V
VH	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
Iccl	Quiescent Power Supply Current	Vcc = 3.6V	Vin = GND or Vcc	_	_	10	μΑ
Іссн							
Iccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	
Δlcc	Quiescent Power Supply	One input at Vcc - 0.6	V	_	_	500	μA
	Current Variation	other inputs at Vcc or	GND				

NOTES:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

2. This applies in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾		Test Conditions	Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3.0V	VI = 2.0V	- 75	_	_	μΑ
I BHL			VI = 0.8V	75	_	_	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	_	_	_	μA
IBHL			VI = 0.7V	_	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	_	_	± 500	μA
Івньо							LVC Linl

NOTES:

1. Pins with Bus-hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

LVC Link

OUTPUT DRIVE CHARACTERISTICS

Voh O	Output HIGH Voltage	1/ 0.01/1 0./1/			Max.	Unit
		VCC = 2.3V to 3.6V	IOH = - 0.1mA	Vcc - 0.2	_	V
		Vcc = 2.3V	IOH = -6mA	2	_	
		Vcc = 2.3V	IOH = - 12mA	1.7	_	
		Vcc = 2.7V		2.2	_	
		Vcc = 3.0V		2.4	_	
		Vcc = 3.0V	I _{OH} = - 24mA	2.2	_	
Vol. O	Output LOW Voltage	Vcc = 2.3V to 3.6V	IOL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 6mA	_	0.4	
			IOL = 12mA	-	0.7	
		Vcc = 2.7V	I _{OL} = 12mA	_	0.4	
		Vcc = 3.0V	IoL = 24mA	_	0.55	LVC Link

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to +85°C.

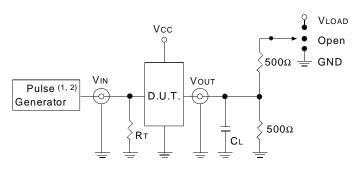
OPERATING CHARACTERISTICS, V_{CC} = 3.3V \pm 0.3V, T_{A} = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per Transceiver Outputs enabled	CL = 0, f = 10Mhz	40	pF
CPD	Power Dissipation Capacitance per Transceiver Outputs disabled		4	pF

SWITCHING CHARACTERISTICS (1)

		Vcc = 2.7V		Vcc = 3.3V±0.3V		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tplh	Propagation Delay	_	4.7	1	4	ns
tphl	xAx to xBx, xBx to xAx					
tpzh	Output Enable Time	_	6.7	1.5	5.5	
tpzl	xOE to xAx or xBx					ns
tphz	Output Disable Time	_	7.1	1.5	6.6	
tplz	xOE to xAx or xBx					ns
tsk(o)	Output Skew ⁽²⁾	_	_	_	1	ns

NOTES:


- 1. See test circuits and waveforms. TA = -40°C to + 85°C.
- 2. Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

	$Vcc^{(1)} = 2.7V$	$Vcc^{(2)} = 2.5V \pm 0.2V$	Unit
6	6	2 x Vcc	٧
2.7	2.7	Vcc	٧
1.5	1.5	Vcc/2	٧
300	300	150	mV
300	300	150	mV
50	50	30	pF
_	1.5 300 300	2.7 2.7 1.5 1.5 300 300 300 300	2.7 2.7 Vcc 1.5 1.5 Vcc / 2 300 300 150 300 300 150

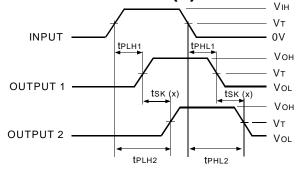
TEST CIRCUITS FOR ALL OUTPUTS

DEFINITIONS:

LVC Link

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Zou⊤ of the Pulse Generator.

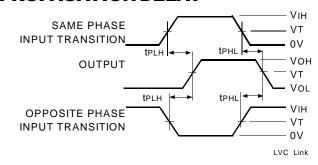

NOTE:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate ≤ 10MHz: tF ≤ 2ns: tR ≤ 2ns.

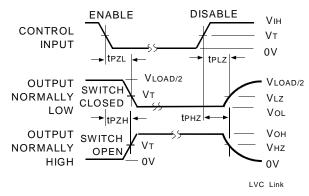
SWITCH POSITION

Test	Switch
Open Drain	VLOAD
Disable Low	
Enable Low	
Disable High	GND
Enable High	
All Other tests	Open
	LVC Link

OUTPUT SKEW - tsk (x)

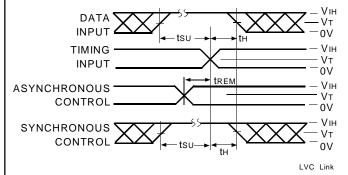


tSK(x) = |tPLH2 - tPLH1| or |tPHL2 - tPHL1|


NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

PROPAGATION DELAY


ENABLE AND DISABLE TIMES

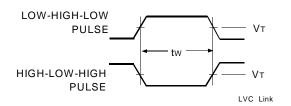
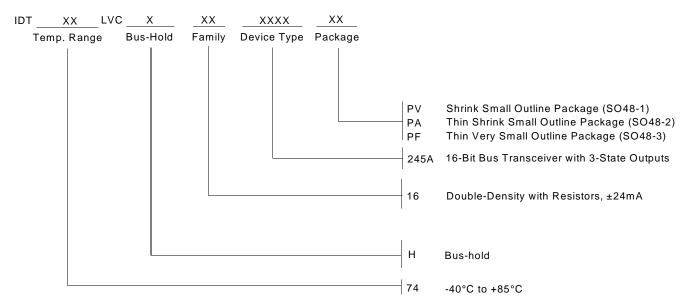

NOTE:

 Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


SET-UP, HOLD, AND RELEASE TIMES

PULSE WIDTH

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*