MM54C941/MM74C941 Octal Buffers/Line Receivers/ Line Drivers with TRI-STATE® Outputs ### **General Description** These octal buffers and line drivers are monolithic complementary MOS (CMOS) integrated circuits with TRI-STATE® outputs. These outputs have been specially designed to drive highly capacitive loads such as busoriented systems. These devices have a fan-out of 6 low power Schottky loads. When $V_{\rm CC}=5V$ inputs can accept true TTL high and low logic levels. TRI-STATE is a registered trademark of National Semiconductor Corp. #### **Features** - Wide supply voltage range (3V to 15V) - Low power consumption - TTL compatibility (Improved on the inputs) - High capacitive load - TRI-STATE® outputs - Input protection - 20-pin dual-in-line package - High output drive #### **Connection Diagram** ### **Logic Diagram** Package Dissipation ## Absolute Maximum Ratings (Note 1) Voltage at Any Pin $0.3\,\text{V to V}_{\text{CC}} + 0.3\,\text{V}$ Operating Temperature Range MM54C941 −55 °C to +125 °C MM74C941 −40 °C to +85 °C Storage Temperature Range −65 °C to +150 °C Operating V_{CC} Range 3.0 V to 15 V V_{CC} 18 V Lead Temperature (Soldering, 10 seconds) 300 °C DC Electrical Characteristics Min/max limits apply across temperature range, unless otherwise noted. 500 mW | | Parameter | Conditions | Min. | Тур. | Max. | Units | |---------------------|--------------------------------------|--|---|--------|------------|------------| | | CMOS to CMOS | | | | | | | V _{IN(1)} | Logical "1" Input
Voltage | V _{CC} = 5.0 V
V _{CC} = 10 V | 2.5
8.0 | | | V
V | | V _{IN(0)} | Logical "0"
Input Voltage | $V_{CC} = 5.0 V$ $V_{CC} = 10 V$ | | | 0.8
2.0 | V
V | | V _{OUT(1)} | Logical "1"
Output Voltage | $V_{CC} = 5.0 \text{ V}, I_{O} = -10 \mu \text{A}$
$V_{CC} = 10 \text{ V}, I_{O} = -10 \mu \text{A}$ | 4.5
9.0 | | | V
V | | V _{OUT(0)} | Logical "0"
Output Voltage | $V_{CC} = 5.0 \text{ V}, I_{O} = +10 \mu\text{A}$
$V_{CC} = 10 \text{ V}, 18 = +10 \mu\text{A}$ | | | 0.5
1.0 | V
V | | I _{IN(1)} | Logical "1"
Input Current | $V_{CC} = 15 V, V_{IN} = 15 V$ | | 0.005 | 1.0 | μ A | | I _{IN(0)} | Logical "0"
Input Current | $V_{CC} = 15 V, V_{IN} = 0 V$ | -1.0 | -0.005 | | μΑ | | Icc | Supply Current | V _{CC} = 15 V | | 0.05 | 300 | μΑ | | | Tristate Leakage | $V_{CC} = 15V$, $V_{OUT} = 0V$ or 15V | | | ±3.0 | μΑ | | | CMOS/TTL Interface | | - 40 | | | | | V _{IN(1)} | Logical "1"
Input Voltage | 54C, V _C = 4.5V
74C, V _{CC} = 4.75V | V _{CC} - 2.5
V _{CC} - 2.5 | | | V
V | | V _{IN(0)} | Logical "0"
Input Voltage | 54C, V _{CC} = 4.5 V
74C, V _{CC} = 4.75 V | | | 8.0
8.0 | V
V | | V _{OUT(1)} | Logical "1"
Output Voltage | 54C, $V_{CC} = 4.5V$, $I_{O} = -450 \mu A$
74C, $V_{CC} = 4.75 V$, $I_{O} = -450 \mu A$
54C, $V_{CC} = 4.5V$, $I_{O} = -2.2 mA$ | V _{CC} - 0.4
V _{CC} - 0.4
2.4 | | | V
V | | | | 74C, $V_{CC} = 4.75V$, $I_{O} = -2.2 \text{ mA}$ | 2.4 | | | v | | V _{OUT(0)} | Logical "0" Output
Voltage | 54C, V _{CC} = 4.5V, I _O = +2.2mA
74C, V _{CC} = 4.75V, I _O = +2.2mA | | | 0.4
0.4 | v
v | | | Output Drive (See 54C/7 | 4C Family Characteristics Data Sheet) | | | | | | ISOURCE | Output Source
Current (P-Channel) | $V_{CC} = 5.0V, V_{OUT} = 0V$
$T_A = 25^{\circ}C$ | -14.0 | - 30.0 | | mA | | ISOURCE | Output Source
Current (P-Channel) | $V_{CC} = 10 \text{ V}, V_{OUT} = 0 \text{ V}$
$T_A = 25^{\circ}\text{C}$ | -36.0 | - 70.0 | | mA | | I _{SINK} | Output Sink
Current (N-Channel) | $V_{CC} = 5.0 \text{ V}, V_{OUT} = V_{CC}$
$T_A = 25 ^{\circ}\text{C}$ | + 12.0 | +20.0 | | mA | | Isink | Output Sink
Current (N-Channel) | $V_{CC} = 10 \text{ V}, V_{OUT} = V_{CC}$
$T_A = 25^{\circ}\text{C}$ | +48.0 | +70.0 | | mA | ## AC Electrical Characteristics $T_A = 25$ °C, $C_L = 50$ pF, unless otherwise specified. | | Parameter | Conditions | Min. | Тур. | Max. | Units | |-------------------------------------|---|--|------|----------------------|-------------------------|----------------------| | t _{pd1} , t _{pd0} | Propagation Delay (Data
IN TO OUT) | V _{CC} = 5.0 V, C _L = 50 pF
V _{CC} = 10 V, C _L = 50 pF
V _{CC} = 5.0 V, C _L = 150 pF
V _{CC} = 10 V, C _L = 150 pF | | 70
35
90
45 | 140
70
160
90 | ns
ns
ns | | t _{IH} , t _{OH} | Propagation Delay Output
Disable to Logic Level (from
High Impedance State) (from a
Logic Level) | $R_L = 1 k\Omega$, $C_L = 50 pF$
$V_{CC} = 5.0 V$
$V_{CC} = 210 V$ | | 100
55 | 200
110 | ns
ns | | t _{H1} , t _{H0} | Propagation Delay Output
Disable to Logic Level (from
High Impedance State) | $R_L = 1 k\Omega, C_L = 50 pF$
$V_{CC} = 5.0 V$
$V_{CC} = 10 V$ | | 100
55 | 200
110 | ns
ns | | t _{THL} , t _{TLH} | Transition Time | $ \begin{array}{c} V_{CC} = 5.0 V, \ C_L = 50 pF \\ V_{CC} = 10 V, \ C_L = 50 pF \\ V_{CC} = 5.0 V, \ C_L = 150 pF \\ V_{CC} = 10 V, \ C_L = 150 pF \end{array} $ | | 50
30
80
50 | 100
60
160
100 | ns
ns
ns
ns | | C _{PD} | Power Dissipation Capacitance
(Output Enabled per Buffer)
(Output Disabled per Buffer) | (See Note 3) | 7 | 100
10 | Ē | pF
pF | | C _{IN.} | Input Capacitance
(Any Input) | (See Note 2)
V _{IN} = 0V, f = 1MHz
T _A = 25°C | | 10 | | pF | | Со | (Output Capacitance)
(Output Disabled) | $V_{IN} = 0v$, $f = 1 MHz$,
$T_A = 25$ °C | | 10 | | pF | Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. ### **Truth Table** | OD1 | OD2 | Input | Output | |-----|-----|-------|--------| | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 1 | | 0 | 1 | Х | Z | | 1 1 | 0 | Х | Z | | 1 | 1 | Х | Z | 1 = High 0 = Low X = Don't Care Z = TRI-STATE® P-Channel Output Drive @ 25°C ∆tpp per pF of Load Capacitance ## **Applications** # **AC Test Circuits and Switching Time Waveforms** #### t1H and tH1 DISABLE VCC 0.5 VCC 0V 11H 0.1 VOH t₁H NOTE: V_{OH} is defined as the DC output high voltage when the device is loaded with a 1 k Ω resistor to ground. #### toH and tHo OUTPUT V_{CC} 0.5 V_{CC} 0.5 V_{CC} 0.1 (V_{CC} - V_{OL}) NOTE: v_{oL} is defined as the DC output low voltage when the device is loaded with a 1 $\rm k\Omega$ resistor to $v_{cc}.$ Note: Delays measured with input t_r , $t_f \le 20$ as