DUAL J-K-MASTER-SLAVE FLIP-FLOP | \$54107

N74107

S54107-A,F • N74107-A,F

DIGITAL 54/74 TTL SERIES

DESCRIPTION

The S54107A/N74107A J-K flip-flop is based on the master-slave principle. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows: See S5473/N7473 waveform.

- 1. Isolate slave from master
- 2. Enter information from J and K inputs to master
- 3. Disable J and K inputs
- 4. Transfer information from master to slave.

TRUTH TABLE

LOGIC	0	
(Eac	h Flip-	Flop)
t	n	t _{n+1}
٦	κ	Q
0	0	Q _n
0	1	o
1	0	1
1	1	$\bar{\mathbf{q}}_{n}$

NOTES:

- 1. t_n = bit time before clack pulse.
- 2. t_{n+1} = bit time after clock pulse.

PIN CONFIGURATIONS

SCHEMATIC (each flip-flop)

SIGNETICS DIGITAL 54/74 TTL SERIES - S54107 ● N74107

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage V _{CC} : S54107 Circuits	4.5	5	5.5	V
N74107 Circuits	4.75	5	5.25	V
Operating Free-Air Temperature Range, T _A : S54107 Circuits	-55	25	125	°C
N74107 Circuits	0	25	70	°c
Normalized Fan-Out from each Output, N			10	
Width of Clock Pulse, p(clock)	20			ns
Width of Clear Pulse, tp(clear)	25			ns
Input Setup Time, t _{Setup}	≥tp(clock)			l
Input Hold Time, thold	0			

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT	
V _{in(1)}	Input voltage required to ensure logical 1 at any input terminal	V _{CC} = MIN			2			٧
V _{in(0)}	Input voltage required to ensure logical 0 at any input terminal	V _{CC} = MIN					8.0	V
V _{out(1)}	Logical 1 output voltage	V _{CC} = MIN,	$I_{load} = -400 \mu A$		2.4	3.5		V
$V_{out(0)}$	Logical O output voltage	V _{CC} = MIN,	I _{sink} = 16mA			0.22	0.4	v
I _{in} (0)	Logical 0 level input current at J or K	V _{CC} = MAX,	$V_{in} = 0.4V$				-1.6	mA
l _{in(0)}	Logical 0 level input current at clear or clock	V _{CC} = MAX,	$V_{in} = 0.4V$				-3.2	mA
l _{in(1)}	Logical 1 level input	V _{CC} = MAX,	$V_{in} = 2.4V$ $V_{in} = 5.5V$				40	μΑ
,	current at J or K	V _{CC} = MAX,					1	mA
lin(1)	Logical 1 level input	V _{CC} = MAX,	$V_{in} = 2.4V$		ŀ		80	μΑ
	current at clear or clock	VCC = MAX,	$V_{in} = 5.5V$				1	mA
los	Short circuit output	V _{CC} = MAX,	$V_{in} = 0$	S54107	-20		-57	mA
	current ^T			N74107	-18		-57	
¹cc	Supply current	V _{CC} = MAX,	$V_{in} = 5V$			20	40	m A

SWITCHING CHARACTERISTICS, V_{CC} = 5V, T_A = 25°C, N = 10

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
tclock	Maximum clock frequency	C _L = 15pF,	R _L = 400Ω	15	20		MHz
t _{pd1}	Propagation delay time to logical 1 level from clear to output	C _L = 15pF,	R _L = 400Ω		16	25	ns
^t pd0	Propagation delay time to logical O level from clear to output	C _L = 15pF,	$R_L = 400\Omega$		25	40	ns
^t pd1	Propagation delay time to logical 1 level from clock to output	C _L = 15pF,	R _L = 400Ω	10	16	25	ns
t _{pd0}	Propagation delay time to logical 0 level from clock to output	C _L = 15pF,	R _L = 400Ω	10	25	40	ns

^{*} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable

^{**} All typical values are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

[†] Not more than one output should be shorted at a time.