DESCRIPTION
The S54157/N74157 and S54158/N74158 are identical with the exception of the S54158/N74158 being inverted. These devices are logical implementations of a four-pole two-position switch, with the position of the switch being set by the logic levels supplied to the one select input. Both assertion and negation outputs are provided. The enable input (E) is active low. When it is not activated the negation output is high and the assertion output is low regardless of all other inputs. The devices provide the ability, in one package, to select four bits of either data or control from two sources. By proper manipulation of the inputs, it can generate four functions of two variables with one variable common. Thus any number of random topic elements used to generate unusual truth tables can be replaced. All outputs are low when disabled (enable high). Both inputs and outputs are buffered.

PIN CONFIGURATION

S54/N74158
TRUTH TABLE

INPUTS			OUTPUT
STROBE	SELECT	A B	V
H	X	X X	H
L	L	L X	H
L	L	H X	L
L	H	X L	H
L	H	X H	L

LOGIC DIAGRAM
S54/N74157
S54/N74157
TRUTH TABLE

INPUTS			OUTPUT
STROBE	SELECT	A B	
H	X	X X	L
L	L	L X	L
L	L	H X	H
L	H	X L	L
L	H	X H	H

LOGIC DIAGRAM S54/N74158

RECOMMENDED OPERATING CONDITIONS

Supply Voltage $V_{C C}$ Normalized Fan-Out from each Output, N High Logic Level Low Logic Level Operating Free-Air Temperature, T_{A}	S54157/58			N74157/58			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
	4.5	5	5.5	4.75	5	5.25	v
			20			20	
			10			10	
	-55	25	125	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*		S54157/58			N74157/58			UNIT
				MIN	TYP**	MAX	MIN	TYP**	MAX	
$V_{\text {IH }}$	High-level input voltage			2			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8			0.8	V
V_{1}	Input clamp voltage	$V_{C C}=$ MAX ,	$\mathrm{I}_{1}=-12 \mathrm{~mA}$			-1.5			-1.5	v
		$V_{C C}=$ MIN ,	$V_{1 H}=2 \mathrm{~V}$,	2.4			2.4			V
VOH	High-level output voltage	$V_{\text {IL }}=0.8 \mathrm{~V}$,	$\mathrm{IOH}^{\prime}=-800 \mu \mathrm{~A}$							V
VOL	Low-level output voltage	$V_{C C}=\mathrm{MIN}$,	$V_{I H}=2 V .$			0.4			0.4	V
11	Input current at maximum inout voltage	$V_{C C}=M A X$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1			1	mA
I/H	High-level input current	$V_{C C}=M A X$,	$\mathrm{V}_{1}=2.4 \mathrm{~V}$			40			40	$\mu \mathrm{A}$
IIL	Low-level input current	$V_{C C}=M A X$,	$V_{1}=0.4 V$			-1.6			-1.6	$m A$
${ }^{\prime}$ OS	Short-circuit output current ${ }^{\dagger}$	$V_{C C}=M A X$		-20		-55	-18		-55	$m A$
ICC	Supply current	$V_{C C}=M A X$			30	48		30	48	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER	FROM	TO	TEST CONDITIONS	MIN	TYP	MAX	UNIT
${ }^{\text {tPHL }}$	Data	Output			9	14	ns
${ }^{\text {PPLH }}$	Data	Output	$C_{L}=15 p F, \quad R_{L}=400$		9	14	ns
${ }_{\text {tPHL }}$	Enable	Any Output			14	21	ns
tPLH	Enable	Any Output			13	20	ns
tPHL	Select	Any Output			18	27	ns
tPLH	Select	Any Output			15	23	ns

- For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
- All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

