4-BIT BIDRECTIONAL UNIVERSAL SHIFT REGISTERS

DESCRIPTION

These bidirectional shift registers are designed to incorporate virtually all of the features a system designer may want in a shift register. The circuit contains 46 equivalent gates and features parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

	MODE CONTROL	
	S1	SO
Parallel (Broadside) Load	H	H
Shift Right (In the direction Q_{A} toward Q_{D} '	L	H
Shift Left (In the direction ${Q_{D}}_{D}$ toward ${Q_{A}}^{\prime}$	H	L
Inhibit Clock (Hold)	L	L

In the parallel-load mode, data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited. Shift right is accomplished synchronously with the rising edge of the clock pulse when S0 is high and S1 is low. Serial data for this mode is entered at the shift-right data input. When S0 is low and S1 is high, data shifts left synchronously and new data is entered at the shift-left serial input. Clocking of the flip-flops is inhibited when both modecontrol inputs are low. The mode controls should be changed only while the clock input is high.
These 4-bit shift registers are compatible with most other TTL and DTL logic families. All inputs are buffered to lower the drive requirements to one normalized Series 54/74 load, and input clamp-

DIGITAL 54/74 TTL SERIES
ing diodes minimize switching transients to simplify system design. Maximum input clock frequency is typically 36 megahertz and power dissipation is typically 195 mW .

The S54194 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the N74194 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

PIN CONFIGURATIONS

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

Supply Voltage $V_{C C}$ Normalized Fan-Out from each Output, N: High logic level Low logic level	S54194			N74194			UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	
	4.5	5	5.5	4.75	5	5.25	V
			20			20	
			10			10	
Input Clock Frequency, ${ }_{\text {clock }}$	0		25	0		25	MHz
Width of Clock or Clear Pulse, $\mathrm{t}_{\mathbf{w}}$	20			20			ns
Setup Time, $\mathrm{t}_{\text {setup }}$: Mode control	30			30			ns
Serial and parallel data	20			20			ns
Clear inactive-state	25			25			ns
Hold Time at any Input, thold	0			0			ns
Operating Free-Air Temperature, $\mathrm{T}_{\text {A }}$	-55		125	0		70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT
$V_{\text {IH }}$	High-level input voltage			2			V
$V_{\text {IL }}$	Low-level input voltage					0.8	v
I_{1}	Input clamp voltage	$V_{C C}=$ MIN,	$I_{1}=-12 m A$			-1.5	v
${ }^{\mathrm{OHH}}$	High-level output voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I L}=0.8 V \end{aligned}$	$\begin{aligned} & V_{I H}=2 V \\ & I_{O H}=-800 \mu A \end{aligned}$	2.4			V
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\begin{aligned} & V_{C C}=M I N \\ & V_{I L}=0.8 V \end{aligned}$	$\begin{aligned} & V_{I H}=2 V \\ & I_{O L}=16 \mathrm{~mA} \end{aligned}$			0.4	V
11	Input current at maximum input voltage	$V_{C C}=M A X$,	$\mathrm{V}_{1}=5.5 \mathrm{~V}$			1	mA
$I_{\text {IH }}$	High-level input current	$V_{C C}=M A X$,	$V_{1}=2.4 \mathrm{~V}$			40	$\mu \mathrm{A}$
$I_{\text {IL }}$	Low-level input current	$V_{C C}=M A X$,	$V_{1}=0.4 \mathrm{~V}$			-1.6	mA
${ }^{\prime} \mathrm{OS}$	Short-circuit output current \dagger	$V_{C C}=M A X$	S64194 N74194	-20 -18		-57 -57	mA
${ }^{1} \mathrm{Cc}$	Supply current	$V_{C C}=M A X$,	See Note 2		39	63	mA

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\text {CC }}=5 \mathrm{~V}, \mathrm{~T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum input clock frequency		25	36		MHz
${ }^{\text {t PHL }}$	Propagation delay time, high-to-low-level output from clear	$C_{L}=15 p F, \quad R_{L}=400 \Omega$		19	30	ns
${ }^{t}$ PLH	Propagation delay time, low-to-high-level output from clock		7	14	22	ns
${ }^{\text {tPHL }}$	Propagation delay time, high-to-low-level output from clock		7	17	26	ns

* For condizions shown as MIN or MAX, use the appropriate value specifled under recommended operating conditions for the applicable device type.
* All typical values are at $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}$.

Not more than one output should be shorted at a time.

