

8-BIT SHIFT REGISTERS | \$54198

S54198-N,F,Q • N74198-F,N

S54198 N74198

DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

TRUTH TABLE

OPERATION OF MODE CONTROL INPUTS MODE S₁ s_o INHIBIT CLOCK L L н L SHIFT LEFT L н SHIFT RIGHT н н PARALLEL LOAD

DESCRIPTION

These 8-bit shift registers are compatible with most other TTL, DTL, and MSI logic families. All inputs are buffered to lower the drive requirements to one normalized Series 54/74 load, and input clamping diodes minimize switching transients to simplify system design. Maximum input clock frequency is typically 35 megahertz and power dissipation is typically 360 mW.

All Series 54 devices are characterized for operation over the full military temperature range of -55° C to 125° C. Series 74 devices are characterized for operation from 0°C to 70°C.

The bidirectional registers are designed to incorporate virtually all of the features a system designer may want in a shift register. These circuits contain 87 equivalent gates and feature parallel inputs, parallel outputs, right-shift and left-shift serial inputs, operating-mode-control inputs, and a direct overriding clear line. The register has four distinct modes of operation, namely:

Parallel (Broadside) Load Shift Right (In the direction Ω_A toward Ω_H) Shift Left (In the direction Ω_H toward Ω_A) Inhibit Clock (Do nothing)

Synchronous parallel loading is accomplished by applying the 8 bits of data and taking both mode control inputs, S_0 and S_1 , high. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shift right is accomplished synchronously with the rising edge of the clock pulse when S_0 is high and S_1 is low. Serial data for this mode is entered at the shift-right data input. When S_0 is low and S_1 is high, data shifts left synchronously and new data is entered at the shift-field serial input.

Clocking of the flip-flop is inhibited when both mode control inputs are low. The mode controls should be changed only while the clock input is high.

Average power dissipation per gate is typically 4.15 mW.

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

		S54198			N 74 198		
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply Voltage V _{CC}	4.5	5	5.5	4.75	5	5.25	v
Normalized Fan-Out from each Output, N: High logic level			20			20	
Low logic level			10			10	
Input Count Frequency, f _{count}	0		25	0		25	MHz
Width of Clock or Clear Pulse, tw	20			20			ns
Mode-Control Setup Time, t _{setup}	30			30			ns
Data Setup Time, t _{setup}	20			20			ns
Hold Time at any Input, thold	0			0			ns
Operating Free-Air Temperature, T _A	-55	25	125	0	25	70	°C

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	METER TEST CONDITIONS' S54198 N74198		3	UNIT					
				MIN	TYP:	MAX	MIN	TYP:	MAX	
V _{IH}	High-level input voltage			2			2			v
VIL	Low-level input voltage					0.8			0.8	v
V,	Input clamp voltage	V _{CC} = MAX,	I ₁ = -12mA			-1.5			-1.5	v
v _{он}	High-level output voltage	V _{CC} = MIN, V _{IL} = 0.8V,	V _{IH} = 2V, I _{OH} =-800µA	2.4			2.4			v
V _{OL}	Low-level output voltage	V _{CC} = MIN, V _{IL} = 0.8V,	V _{IH} = 2V, I _{OL} = 16mA			0.4			0.4	v
ı,	Input current at maximum input voltage	V _{CC} = MAX,	V _I = 5.5∨			1			1	mA
ЧΗ	High-level input current	V _{CC} = MAX,	V ₁ = 2.4V			40			40	μA
11	Low-level input current	V _{CC} = MAX,	V _I = 0.4V			-1.6			-1.6	mA
I _{OS} Icc	Short-circuit output current [†] Supply current	V _{CC} = MAX V _{CC} = MAX,	Table Below	-20	72	-57 104	-18	72	-57 116	mA mA

SWITCHING CHARACTERISTICS, V_{CC} = 5V, T_A = 25°C, N = 10

1	PARAMETER	TEST CO	NDITIONS	MIN	түр	MAX	UNIT
f _{max}	Maximum input count frequency			25	35		MHz
^t PHL	Propagation delay time, high-to- low-level output from clear	C. = 15oE	R. = 4000		23	35	ns
^t PHL	Propagation delay time, high-to- low-level output from clock		11L - 40012	8	20	30	ns
^t PLH	Propagation delay time, low-to- high-level output from clock			8	17	26	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

•• All typical values are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. † Not more than one output should be shorted at a time.

TEST CONDITIONS FOR ICC (all outputs are open)

TYPE	APPLY 4.5V	FIRST GROUND, THEN APPLY 4.5V	GROUND
S54198, N74198	Serial input, S _O , S ₁	Clock	Clear, Inputs A thru H