DESCRIPTION

These J-K flip-flops are based on the master-slave principle and each has AND gate inputs for entry into the master section which are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows:

1. Isolate slave from master
2. Enter information from AND gate inputs to master
3. Disable AND gate inputs
4. Transfer information from master to slave.

TRUTH TABLE

NOTES:

1. $\mathrm{J}=\mathrm{J} 1 \cdot \mathrm{~J} 2 \cdot \mathrm{~J} 3$
2. $K=K 1 \cdot K 2 \cdot K 3$
3. $t_{n}=8 i t$ time before clock pulse.
4. $\mathbf{t}_{\mathrm{n}+1}=$ Bit time after clock pulse.
5. $\mathrm{NC}=$ No Internal Connection.

DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

CLOCK WAVEFORM

SCHEMATIC DIAGRAM

NOTE: Component values shown are nominal.

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage $\mathrm{V}_{\text {CC }}$: S5472 Circuits	4.5	5	5.5	V
N7472 Circuits	4.75	5	5.25	V
Operating Free-Air Temperature Range, $\mathrm{TA}_{\text {A }}$: S5472 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
N7472 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fan-Out From each Output, N			10	
Width of Clock Pulse, t_{p} (clock)	20			ns
Width of Preset Pulse, $t_{p(p r e s e t)}$	25			ns
Width of Clear Pulse, $t_{p(c l e a r)}$	25			ns
Input Setup Time, ${ }_{\text {setup }}$	$\geqslant t_{\text {p }}$ (clock)			
Input Hold Time, thold	0			

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*			MIN	TYP**	MAX	UNIT
$\mathrm{V}_{\text {in(1) }}$	Input voltage required to ensure logical 1 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$			2			V
$V_{\text {in(0) }}$	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=\mathrm{MIN}$					0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$l_{\text {load }}=-400 \mu \mathrm{~A}$		2.4	3.5		V
$V_{\text {out (0) }}$	Logical 0 output voltage	$V_{C C}=M I N$,	$\mathrm{I}_{\text {sink }}=16 \mathrm{~mA}$			0.22	0.4	V
$1 \mathrm{in}(0)$	Logical 0 level input current at J1, J2, J3, K1, K2, or K3	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$				-1.6	mA
$1 \mathrm{in}(0)$	Logical 0 level input current at preset, clear, or clock	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$				-3.2	mA
$1 \mathrm{in}(1)$	Logical 1 level input current at J1, J2, J3, K1, K2, or K3	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\text {in }}=2.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				$\begin{array}{r} 40 \\ 1 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$1 \mathrm{in}(1)$	Logical 1 level input current at preset, clear, or clock	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				80 1	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
${ }^{\prime} \mathrm{OS}$	Short circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX,	$v_{\text {in }}=0$	$\begin{aligned} & \text { S5472 } \\ & \text { N7472 } \end{aligned}$	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -57 \\ & -57 \end{aligned}$	mA
${ }^{\prime} \mathrm{Cc}$	Supply current	$V_{C C}=M A X$,	$v_{\text {in }}=5 \mathrm{~V}$			10	20	mA

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\text {CC }}=\mathbf{5 V}, \mathrm{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {clock }}$	Maximum clock frequency	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	15	20		MHz
tod 1	Propagation delay time to logical 1 level from clear or preset to output	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		16	25	ns
${ }^{\text {t }}$ pd0	Propagation delay time to logical 0 level from clear or preset to output	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		25	40	ns
${ }^{t} \mathrm{pd} 1$	Propagation delay time to logical 1 level from clock to output	$C_{L}=15 \mathrm{pF}$,	$R_{L_{-}}=400 \Omega$	10	16	25	ns
${ }^{\text {tpdo }}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	10	25	40	ns

[^0]
[^0]: * For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 * All typical values are at $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C} . \quad+$ Not more than one output should be shorted at a time.

