

QUADRUPLE BISTABLE LATCH | S5477

PIN CONFIGURATIONS

S5477W • N7477W

S5477 N7477

DIGITAL 54/74 TTL SERIES

DESCRIPTION

The S5477Q/N7477Q is a monolithic, quadruple, bistable latch with Q outputs. Information present at a data (D) input is transferred to the Q output when the clock is high, and the Q output will follow the data input as long as the clock remains high. When the clock goes low, the information (that was present at the data input at the time the transition occurred) is retained at the Q output until the clock is permitted to go high.

This latch is ideally suited for use as temporary storage for binary information between processing units and input/output or indicator units.

TRUTH TABLE

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	МАХ	UNIT
Supply Voltage V _{CC} (See Note 3): S5477 Circuits	4.5	5	5.5	V
N7477 Circuits	4.75	5	5.25	v
Normalized Fan-Out from each Output, N			10	
Operating Free-Air Temperature Range, TA: S5477 Circuits	-55	25	125	°C
N7477 Circuits	0	25	70	°C

SCHEMATIC (each latch)

DIGITAL 54/74 TTL SERIES = \$5477, N7477

PARAMETER		TEST CONDITIONS*		MIN	TYP**	MAX	UNIT	
V _{in(1)}	Input voltage required to ensure logical 1 level at any input terminal	V _{CC} ≖ MIN			2			v
V _{in(0)}	Input voltage required to ensure logical O level at any input terminal	V _{CC} = MIN					0.8	v
Vout(1)	Logical 1 output voltage	V _{CC} - MIN,	l _{load} ≂ -400µA		2.4			V
Vout(0)	Logical 0 output voltage	V _{CC} = MIN,	I _{sink} = 16mA				0.4	V
in(0)	Logical 0 level input current at D	V _{CC} = MAX,	V _{in} = 0.4V				-3.2	mA
lin(0)	Logical O level input current at clock	V _{CC} ≖ MAX,					-6.4	mA
in(1)	Logical 1 level input current at D	V _{CC} = MAX, V _{CC} = MAX,	V _{in} = 2.4V V _{in} = 5.5V				80 1	μA mA
lin(1)	Logical 1 level input current at clock	V _{CC} = MAX, V _{in} = 2.4V,					160	μA
		V _{CC} = MAX,	V _{in} = 5.5V				1	mA
os	Short circuit output current1	V _{CC} = MAX, V _{out} = 0		S5477 N7477	-20 -18		-75 -75	mA mA
cc	Supply current	V _{CC} ≃ MAX,		S5477 N7477		32 32	46 53	mA mA

SWITCHING CHARACTERISTICS, $V_{CC} = 5V$, $T_A = 25^{\circ}C$, N = 10

	PARAMETER		TEST CONDITIONS NOTE A	MIN	ТҮР	MAX	UNIT
t _{setup} 1	Minimum logical 1 level input setup time at D input	CL = 15pF,	R _L = 400Ω		7	20	ns
^t setup0	Minimum logical O level input setup time at D input	C _L = 15pF,	RL = 400Ω		14	20	ns
^t hold1	Maximum logical 1 level input hold time required at D input	CL = 15pF,	RL = 400Ω	0	15¶		ns
^t hold0	Maximum logical 0 level input hold time required at D input	С _L = 1брF,	R _L = 400Ω	0	6¶		ns
^t pd1(D-Q)	Propagation delay time to logical 1 level from D input to Q output	C _L = 15pF,	RL ≃ 400Ω		16	30	ns
^t pd0(D-Q)	Propagation delay time to logical O level from D input to Q output	CL = 15pF,	RL ≖ 400Ω		14	25	ns
^t pd1(C-Q)	Propagation delay time to logical 1 level from clock input to Ω output	С _L = 15рF,	RL = 400Ω		16	30	ns
[†] pd0(C-Q)	Propagation delay time to logical 0 level from clock input to Q output	С _L = 15рF,	R _L = 400\$2		7	15	ns

* For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.

* All typical values are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$. † Not more than one output should be shorted at a time.

¶ These typical times indicate that period occurring prior to the fall of clock pulse (t₀) below 1.5V when data at the D input will still ba recognized and stored.

NOTE A: AC Test circuit, voltage waveforms and switching times are given on page 2-76