DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

3. When A_{1} and A_{2} or B_{1} and B_{2} are used as inputs, A^{*} or B^{*} respectively, must be open or usea to perform Dot-OR logic.
4. The voltages are with respect to ground terminal.
5. Input signals must be zero or positive with respect to network
ground terminal.

NOTES:

1. $A=\overline{A^{\bullet} \cdot \bar{A}_{c}}, B=\overline{B^{\bullet} \cdot B_{c}}$ where $A^{\cdot}=\overline{A_{1} \cdot A_{2}}, B^{\cdot}=\overline{B_{1} \cdot B_{2}}$. 2. When A^{*} or B^{*} are used as inputs, A_{1} and A_{2} or B_{1} and B_{2} respectively, must be connected to GND.

SCHEMATIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage V ${ }_{\text {CC: }}$: $\begin{aligned} & \text { S5480 Circuits } \\ & \\ & \\ & \text { N7480 Circuits }\end{aligned}$	4.5	5	5.25	V
	4.75	5	5.25	V
Normalized Fan-Out from Outputs: $\begin{aligned} \overline{C_{n}+1}, N \\ \Sigma \text { or }^{\bar{\Sigma}}, \mathrm{N}\end{aligned}$			5	
			10	
A^{*} or B^{*}, N			3	
Operating Free-Air Temperature Range, $\mathbf{T}_{\mathbf{A}}$: \quad S5480 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
N7480 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted):

	PARAMETER	TEST CONDITIONS*			MIN	TYP**	MAX	UNIT
$V_{\text {in(}}(1)$	Logical 1 input voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$			2			V
$V_{\text {in }}(0)$	Logical 0 input voltage	$\mathbf{V}_{\mathbf{C C}}=$ MIN					0.8	v
$V_{\text {out(1) }}$	Logical 1 output voltage	$V_{C C}=$ MIN			2.4	3.5		v
$V_{\text {out (0) }}$	Logical 0 output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$				0.22	0.4	\checkmark
$1 \mathrm{in}(0)$	Logical 0 level input current at $A_{1}, \dot{A}_{2}, B_{1}$, B_{2}, A_{c} or B_{c}	$V_{C C}=$ MAX,	$V_{\text {in }}=0.4 \mathrm{~V}$				-1.6	mA
$1 \mathrm{in}(0)$	Logical O level input current at $A \star$ or B^{\star}	$V_{C C}=\mathbf{M A X}$.	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$				-2.6	mA
lin(0)	Logical 0 level input current at C_{n}	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$				-8	mA
${ }^{1}$ in(1)	Logical 1 level input current at A_{1}, A_{2}, B_{1}. B_{2}, A_{c} or B_{c}	$\begin{aligned} & V_{C C}=\text { MAX } \\ & V_{C C}=M A X \end{aligned}$	$\begin{aligned} & V_{i n}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				15 1	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$1 \mathrm{in}(1)$	Logical 1 level input current at $\mathbf{C}_{\mathbf{n}}$	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				$\begin{array}{r} 200 \\ 1 \end{array}$	$\begin{aligned} & \mu A \\ & m A \end{aligned}$
'OS	Short circuit output current at Σ or $\bar{\Sigma} \dagger$	$V_{C C}=$ MAX .		$\begin{aligned} & \text { S5480 } \\ & \text { N7480 } \end{aligned}$	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -57 \\ & -57 \end{aligned}$	$\begin{aligned} & m A \\ & m A \end{aligned}$
${ }^{\prime} \mathrm{OS}$	Short circuit output current at $\overline{\mathrm{C}_{\mathrm{n}+1}}{ }^{\dagger}$	$V_{C C}=M A X$,		S5480 N7480	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -70 \\ & -70 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
${ }^{1} \mathrm{CC}$	Supply current	$V_{C C}=M A X$,		$\begin{aligned} & \text { S5480 } \\ & \text { N7480 } \end{aligned}$		$\begin{aligned} & 21 \\ & 21 \end{aligned}$	$\begin{aligned} & 31 \\ & 35 \end{aligned}$	$\underset{m A}{m A}$

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\mathbf{C C}} \mathbf{- 5 V}, \mathbf{T}_{A}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

[^0]
[^0]: - For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 - All typical values are at $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
 t Not more than one output should be shorted at a tlme.
 It $t_{\text {pd }}$ is propagation delay time to logical 1 level. $t_{p d O}$ is propagation delay time to logical 0 level.

