4-BIT BINARY FULL ADDER (LOOK AHEAD CARRY)

DIGITAL 54/74 TTL SERIES

DESCRIPTION
The $54 / 7483$ is a 4-Bit Binary Full Adder for adding two four bit binary numbers. A Carry Look Ahead circuit is included to provide minimum carry propagation delays.

Propagation delays of carry-in to carry-out is typically 12 nsec.
TRUTH TABLE

INPUT				OUTPUT					
				WHE $\mathrm{C}_{0}=$	$\begin{aligned} & \mathrm{EN} \\ & =0 \\ & \mathrm{C}_{2} \end{aligned}$	$\begin{aligned} & \text { HEN } \\ & =0 \end{aligned}$	CH_{0}	$\begin{aligned} & \mathrm{N} \\ & 1 \\ & \mathrm{C}_{2}= \end{aligned}$	HEN 1
$\begin{array}{\|c} A_{1} \\ A_{3} \\ \hline \end{array}$								$\sqrt{\Sigma_{2}}$	c_{2}
0	0	0	0	0	0	0	1	0	0
1	0	0	0	1	0	0	0	1	0
0	1	0	0	1	0	0	0	1	0
1	1	0	0	0	1	0	1	1	0
0	0	1	0	0	1	0	1	1	0
1	0	1	0	1	1	0	0	0	1
0	1	1	0	1	1	0	0	0	1
1	1	1	0	0	0	1	1	0	1
0	0	0	1	0	1	0	1	1	0
1	0	0	1	1	1	0	0	0	1
0	1	0	1	1	1	0	0	0	1
1	1	0	1	0	0	1	1	0	1
0	0	1	1	0	0	1	1	0	1
1	0	1	1	1	0	1	0	1	1
0	1	1	1	1	0	1	0	1	1
1	1	1	1	0	1	1	1	1	1

NOTES:
Input conditions at $A_{1}, A_{2}, B_{1}, B_{2}$, and C_{0} are used to determine outputs Σ_{1} and Σ_{2}, and the value of the internal carry C_{2}. The

PIN CONFIGURATIONS

values at $C_{2}, A_{3}, B_{3}, A_{4}$, and B_{4}, are then used to determine outputs Σ_{3}, Σ_{4}, and C_{4}.

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

Supply Voltage $\mathrm{V}_{\text {cc }}$: (See Note 1)		MIN	NOM	MAX	UNIT
	S5483 Circuits	4.5	5	5.5	V
	N7483 Circuits $\quad 4.75$		5	5.25	v
Normalized Fan-Out From Outputs:	$\begin{aligned} & C_{4} \\ & \Sigma_{1}, \Sigma_{2}, \Sigma_{3} \text { or } \Sigma_{4} \end{aligned}$			5	
				10	

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted $\mathrm{N}=\mathbf{1 0}$

PARAMETER \ddagger		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {tpd1 }}$	From C_{0} to 1	$C_{L}=50 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		23	34	ns
${ }^{\text {tpdo }}$	From C_{0} to 1	$C_{L}=50 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		20	34	as
${ }^{\text {tpd1 }}$	From C_{0} to 2	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		24	35	ns
${ }^{\text {t }{ }_{\text {d } 0}}$	From C_{0} to 2	$C_{L}=50 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		22	35	ns
${ }^{\text {p pd } 1}$	From C_{0} to 3	$C_{L}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$		30	50	ns
${ }^{\text {tpdo }}$	From C_{0} to 3	$C_{L}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$		24	40	ns
${ }^{\text {t }}$ pd1	From C_{0} to 4	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$		30	50	ns
${ }^{\text {t pdo }}$	From C_{0} to 4	$C_{L}=50 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=400 \Omega$		28	50	ns
${ }^{t} \mathrm{pd} 1$	From C_{0} to C_{4}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=780 \Omega$		12	20	ns
${ }^{\text {tpdo }}$	From C_{0} to C_{4}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$\mathrm{R}_{\mathrm{L}}=780 \Omega$		12	20	ns
${ }^{\text {t }}{ }_{\text {d } 11}$	From A_{2} or B_{2} to 2	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$			40	ns
${ }^{\text {tpdo }}$	From A_{2} or B_{2} to 2	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$			35	ns
${ }^{t_{p d 1}}$	From A_{4} of B_{4} to 4	$C_{L}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$			40	s
${ }^{\text {p pdo }}$	From A_{4} of B_{4} to 4	$C_{L}=50 \mathrm{pF}$,	$R_{L}=400 \Omega$			35	ns

$\dagger \quad T_{p d 1}$ is propagation delay time to logical 1 level. $t_{p d O}$ is propagation delay time to logical 0 level.

- For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.
** All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
+ Not more than one output should be shorted at a time.
NOTE 1: These voltage values are with respect to network ground terminal.

