DIGITAL 54/74 TL SERIES
PIN CONFIGURATIONS

URATIONS

A,F PACKAGE

DESCRIPTION

The S5490/N7490 is a high-speed, monolithic decade counter consisting of four dual-rank, master-slave flip-flops internally interconnected to provide a divide-by-two counter and a divide-by-five counter. Gated direct reset lines are provided to inhibit count inputs and return all outputs to a logical " 0 " or to a binary coded decimal (BCD) count of 9. As the output from flip-flop A is not internally connected to the succeeding stages, the count may be separated in three independent count modes:

1. When used as a binary coded decimal decade counter, the BD input must be externally connected to the A output. The A input receives the incoming count, and a count sequence is obtained in accordance with the BCD count sequence truth table shown above. In addition to a conventional " 0 " reset, inputs are provided to reset a BCD 9 count for nine's complement decimal applications.
2. If a symmetrical divide-by-ten count is desired for frequency synthesizers or other applications requiring division of a binary count by a power of ten, the D output must be externally connected to the A input. The input count is then applied at the BD input and a divide-by-ten square wave is obtained at output A.
3. For operation as a divide-by-two counter and divide-by-five counter, no external interconnections are required. Flip-flop A is used as a binary element for the divide-by-two function. The BD input is used to obtain binary divide-by-five operation at the B, C, and D outputs. In this mode, the two counters operate independently; however, all four flip-flops are reset simultaneously.
The 5490/7490 is completely compatible with Series 54 and Series 74 logic familes. Average power dissipation is 160 mW .

LOGIC TRUTH TABLES

BCD COUNT SEQUENCE (See Note 1)					RESET/COUNT (See Note 2)					NOTES: 1. Output A connected to input
COUNT	OUTPUT				RESET INPUTS				OUTPUT	
	D	C	B	A	$\mathrm{R}_{\mathrm{O}(1)}$	$\mathrm{R}_{0(2)}$	$\mathrm{R}_{\mathbf{9}(1)}$	$\mathrm{R}_{9(2)}$	D C B A	
0	0	0	0		1	1	0	x	0000	2. x for BCD count.
2	0	0 0	0 1	0	1	1	X	0	0 0 0 0 0	2. Cal 1 of a logical 0 may be pre-
3	0	0	1	1	x	x	1	1	10001	sent.
4	0	1	0	0	x	0	X	0	COUNT	3. Fanout from, output A to in-
6	0	1	1	0	0	x	0	x	COUNT	put $B D$ and to 10 additional
7	0	1	1	1	0				COUNT	Series 54/74 loads is permitted
8	1	0	0	0	0	x	x	0	COUNT	
9	1	0	0	1	x	0	0	\times	COUNT	

SCHEMATIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
$\begin{array}{ll}\text { Supply Voltage } V_{\text {CC }} \text { : } & \text { S5490 Circuits } \\ & \text { N7490 Circuits }\end{array}$		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from each Output, N				10	
Width of Input Count Pulse, t_{p} (in)		50			ns
Width of Reset Pulse, $t_{\text {p(reset) }}$		50			ns
Operating Free-Air Temperature Range, T_{A} :	S5490 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7490 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*			MIN	TYP**	MAX	UNIT
$V_{\text {in }}(1)$	Input voltage required to ensure logical 1 at any input terminal	$V_{C C}=$ MIN			2			V
$V_{\text {in }}(0)$	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=M I N$					0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$V_{C C}=$ MIN,	$\mathrm{I}_{\text {load }}=-400 \mu \mathrm{~A}$		2.4			V
$\mathrm{V}_{\text {out (0) }}$	Logical 0 output voltage	$V_{C C}=$ MIN,	$I_{\text {sink }}=16 \mathrm{~mA}$				0.4	V
$I_{\text {in }}(1)$	Logical 1 level input current at $\mathrm{R}_{\mathrm{O}}(1)$, $\mathrm{R}_{\mathrm{O}(2)}, \mathrm{R}_{9(1) \text {, or }}$ R9(2)	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{i n}=2.4 \mathrm{~V} \\ & V_{i n}=5.5 \mathrm{~V} \end{aligned}$;			$\begin{aligned} & 40 \\ & 1 \end{aligned}$	$\begin{aligned} & \mu A \\ & m A \end{aligned}$
$\operatorname{lin}(1)$	Logical 1 level input current at input A	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & v_{\text {in }}=2.4 \mathrm{~V} \\ & v_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				80	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$1 \mathrm{in}(1)$	Logical 1 level input current at input BD	$\begin{aligned} & v_{C C}=M A X \\ & v_{C C}=M A X \end{aligned}$	$\begin{aligned} & v_{i n}=2.4 \mathrm{~V} \\ & v_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				$\begin{array}{r} 160 \\ 1 \end{array}$	$\underset{m A}{\mu A}$
1 in (0)	Logical 0 level input current at $\mathrm{R}_{0}(1)$. $\mathrm{R}_{\mathrm{O}(2)}, \mathrm{R}_{\mathrm{g}(1) \text {, or }}$ R9(2)	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$				-1.6	mA
$\operatorname{lin}(0)$	Logical 0 level input current at input A	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$				-3.2	mA
$\operatorname{lin}(0)$	Logical 0 level input current at input BD	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$				-6.4	mA
${ }^{\prime} \mathrm{OS}$	Short circuit output current ${ }^{\dagger}$	$V_{C C}=M A X$,	$\mathrm{V}_{\text {out }}=0 \mathrm{~V}$	$\begin{aligned} & \text { S5490 } \\ & \text { N7490 } \end{aligned}$	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -57 \\ & -57 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
${ }^{1} \mathrm{Cc}$	Supply current	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$	$\begin{aligned} & \text { S5490 } \\ & \text { N7490 } \end{aligned}$		$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 46 \\ & 53 \end{aligned}$	$\begin{aligned} & m A \\ & m A \end{aligned}$

SWITCHING CHARACTERISTICS, $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum frequency of input count pulses	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	10	18		MHz
${ }^{\text {tpd }} 1$	Propagation delay time to logical 1 level from input count pulse to output C	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		60	100	ns
${ }^{\text {tpdO }}$	Propagation delay time to logical 0 level from input count pulse to output C	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		60	100	ns

[^0] circuit type.

- All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
t Not more than one output should be shorted at a time.

[^0]: - For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable

