DIGITAL 54/74 TTL SERIES

DESCRIPTION

The S5491/N7491 is a monolithic serial-in, serial-out 8 bit shift register utilizing high-speed transistor-transistor logic (TTL) circuits. The shift register, composed of eight R-S master-slave flip-flops, includes input gating and a clock driver. The register is capable of storing and transferring data at clock rates up to 18 MHz while maintaining a typical noise-immunity level of 1 volt. Power dissipation is typically 175 milliwatts, and full fan-out of 10 is available from the outputs.

Single-rail data and input control are gated through inputs A and B and an internal inverter to form the complementary inputs to the first bit of the shift register. Drive for the internal common clock line is provided by an inverting clock driver. Each of the inputs (A, B, end $\bar{C} \bar{F}$) appear as only one TTL input load.

The clock pulse inverter/driver causes the S5491/N7491 to shift information to the output on the positive edge of an input clock puise, thus enabling the shift-register to be fully compatible with the S5470/N7470 flip-flop and the S5474/N7474 dual D-type flip-flop.

TRUTH TABLE

LOGIC			NOTES: 1. $t_{n}=$ bit time before clock pulse. 2. $t_{n+B}=$ bit time after 8 clock pulso.
t_{n}		$t^{\prime}+8$	
A	B	0	
0	1	0	
1	0	0	
1	1	1	

PIN CONFIGURATIONS

W PACKAGE

A,F PACKAGE

SCHEMATIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

Supply Voltage $\mathrm{V}_{\text {cc }}$: $\begin{aligned} & \text { S5491 Circuits } \\ & \\ & \text { N7491 Circuits }\end{aligned}$		MIN	NOM	MAX	UNIT
		4.5	5	5.5	V
		4.75	5	5.25	V
Normalized Fan-Out from each Output, N Operating Free-Air Temperature Range, $\mathbf{T}_{\mathbf{A}}$:				10	
	S5491 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7491 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Width of Clock Pulse, $\mathrm{t}_{\text {p (clock) }}$		25			ns
Input Setup Time, ${ }_{\text {setup }}$		25			ns
Input Hold Time, thold		0			

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

| | PARAMETER | | TEST CONDITIONS* |
| :--- | :--- | :--- | :--- | :--- | :--- |

SWITCHING CHARACTERISTICS, $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum shift frequency	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	10	18		MHz
${ }^{t} \mathrm{pd} 1$	Propagation delay time to logical 1 level from clock to autput	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		24	40	ns
${ }^{1}$ pd0	Propagation delay time to logical 0 level from clock to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		27	40	ns

- For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
* All typical values are at $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}$.
t Not more than one output should be shorted at a time.

