DIVIDE-BY-TWELVE COUNTER [DIVIDE-BY-TWO AND DIVIDE-BY-SIX]

DESCRIPTION

The S5492/N7492 is a high-speed monolithic 4-bit binary counter consisting of four master-slave flip-flops which are internally interconnected to provide a divide-by-two counter and a divide-by-six counter. A gated direct reset line is provided which inhibits the count inputs and simultaneously returns the four flip-flops outputs to a logical 0 . As the output from flip-flop \mathbf{A} is not internally connected to the succeeding flip-flops the counter may be operated in two independent modes:

1. When used as a divide-by-twelve counter, output A must be externally connected to input BC. The input count pulses are applied to input A. Simultaneous division of 2,6 , and 12 are performed at the A, C, and D outputs as shown in the truth table.
2. When used as a divide-by-six counter, the input count pulses are applied to input BC. Simultaneously, frequency division of 3 and 6 are available at the C and D outputs. Independent use of flip-flop A is available if the reset function coincides with reset of the divide-by-six counter.

The S5492/N7492 is completely compatible with Series 54 and Series 74 logic families. Average power dissipation is 155 mW .

DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

TRUTH TABLE (See Notes 1 and 2)

COUNT	OUTPUT			
	D	C	B	A
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1

COUNT	OUTPUT			
	D	C	B	A
6	1	0	0	0
7	1	0	0	1
8	1	0	1	0
9	1	0	1	1
10	1	1	0	0
11	1	1	0	1

NOTES:

1. Output A connected to input B.
2. To reset all outputs to logical 0 , both $\mathrm{R}_{\mathrm{O}(1)}$ and $\mathrm{R}_{\mathrm{O}(2)}$ inputs
must be at logical 1 .

SCHEMATIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage $\mathrm{V}_{\text {CC }}$: $\begin{aligned} & \text { S5492 Circuits } \\ & \text { N7492 Circuits }\end{aligned}$		4.5	5	5.5	V
		4.75	5	5.25	V
Operating Free-Air Temperature Range, T_{A} :	S5492 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N7492 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fan-Out from each Output, N				10	
Width of Input Count Pulse, t_{p} (in)		50			ns
Width of Reset Pulse, $\mathrm{t}_{\mathrm{p} \text { (reset) }}$		50			ns

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS *			MIN	TYP**	MAX	UNIT
$V_{i n}(1)$	Input voltage required to ensure logical 1 at any input terminal	$V_{C C}=\mathrm{MIN}$			2			V
$V_{\text {in }}(0)$	Input voltage required to ensure logical 0 at any input terminal	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$					0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$l_{\text {load }}=-400 \mu \mathrm{~A}$		2.4			V
Vout (0)	Logical 0 output voltage	$\mathrm{V}_{C C}=\mathrm{MIN}$,	$I_{\text {sink }}=16 \mathrm{~mA}$				0.4	V
$1 \mathrm{in}(1)$	Logical 1 level input current at $\mathrm{R}_{\mathrm{O}}(1)$ or $R_{0(2)}$ inputs	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				$\begin{array}{r} 40 \\ 1 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$\operatorname{lin}(1)$	Logical 1 level input current at input A	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				80 1	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$\operatorname{lin}(1)$	Logical 1 level input current at input BC	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				160 1	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$1 \mathrm{in}(0)$	Logical 0 level input current at $\mathrm{R}_{\mathrm{O}(1) \text { or }}$ $R_{0(2)}$ inputs	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$				-1.6	mA
$1 \mathrm{in}(0)$	Logical 0 level input current input A	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$				-3.2	mA
$1 \mathrm{in}(0)$	Logical 0 level input current at input BC	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$				-6.4	mA
'os	Short circuit output current \dagger	$V_{C C}=M A X$,	$\mathrm{V}_{\text {out }}=0$	$\begin{aligned} & \text { S5492 } \\ & \text { N7492 } \end{aligned}$	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -57 \\ & -57 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
${ }^{1} \mathrm{Cc}$	Supply current	$V_{C C}=$ MAX ,	$\mathrm{V}_{\text {in }}=4.5 \mathrm{~V}$	$\begin{aligned} & \text { S5492 } \\ & \text { N7492 } \end{aligned}$		$\begin{aligned} & 31 \\ & 31 \end{aligned}$	$\begin{aligned} & 44 \\ & 51 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$

SWITCHING CHARACTERISTICS, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum frequency of input count pulses	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	10	18		MHz
${ }^{\text {tpd }} 1$	Propagation delay time to logical 1 level from input count pulse to output D	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		60	100	ns
${ }^{\text {tpd0 }}$	Propagation delay time to logical 0 level from input count pulse to output D	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		60	100	ns

[^0]
[^0]: - For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 ** All typical values are at $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}$.
 t Not more than one output should be shorted at a time.

