DESCRIPTION

The S5493/N7493 is a high-speed, monolithic 4 -bit binary counter consisting of four master-slave flip-flops which are internally interconnected to provide a divide-by-two counter and a divide-byeight counter. A gated direct reset line is provided which inhibits the count inputs and simultaneously returns the four flip-flop outputs to a logical 0 . As the output from flip-flop A is not internally connected to the succeeding flip-flops the counter may be operated in two independent modes:

1. When used as a 4 -bit ripple-through counter output A must be externally connected to input B. The input count pulses are applied to input A. Simultaneous divisions of $2,4,8$, and 16 are performed at the A, B, C, and D outputs as shown in the truth table.
2. When used as a 3-bit ripple-through counter, the input count pulses are applied to input B. Simultaneous frequency divisions of 2, 4, and 8 are available at the B, C, and D outputs. Independent use of flip-flop A is available if the reset function coincides with reset of the 3 -bit ripple-through counter.

The S5493/N7493 is completely compatible with Series 54 and Series 74 logic families. Average power dissipation is 32 mW per flip-flop (128 mW total).

DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

TRUTH TABLE (See Notes 1 and 2)

LOGIC										NOTES: 1. Output A connected to input B. 2. To reset all outputs to logical 0 , both $R_{0(1)}$ and $R_{0(2)}$ inpurs must be at logical 1.
COUNT					COUNT	OUTPUT				
	D	C	B	A		D	C	B	A	
0	0	0	0	0	9	1	0	0	1	
1	0	0	0	1	10					
2	0	0	1	0	10	1			0	
3	0	0	1	1	11	1	0	1	1	
4	0	1	0	0	12	1	1	0	0	
5	0	1	0	1	13	1	1	0	1	
6	0	1	1	0						
7	0	1	1	1	14	1	1	1	0	
8	1	0	0	0	15	1	1	1	1	

SCHEMATIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage $\mathrm{V}_{\text {CC }}$: S5493 Circuits	4.5	5	5.5	V
N7493 Circuits	4.75	5	5.25	V
Operating firee-Air Temperature Range, $\mathbf{T}_{\mathbf{A}}$: $\quad \mathbf{S 5 4 9 3}$ Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
N7493 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fan-Out from each Output, N			10	
Width of Input Count Pulse, ${ }_{\text {p }}$ (in)	50			ns
Width of Reset Pulse, $\mathrm{t}_{\mathrm{p} \text { (reset) }}$	50			ns

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*			MIN	TYP**	MAX	UNIT
$V_{i n(1)}$	Input voltage required to ensure logical 1 at any input terminal	$V_{C C}=\mathrm{MIN}$			2			v
$V_{\text {in }}(0)$	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=$ MIN					0.8	v
$V_{\text {out(1) }}$	Logical 1 output voltage	$V_{C C}=$ MIN,	$l_{\text {load }}=-400 \mu \mathrm{~A}$		2.4			V
$V_{\text {out (0) }}$	Logical 0 output voltage	$V_{C C}=$ MIN ,	$I_{\text {sink }}=16 \mathrm{~mA}$				0.4	V
$1 \mathrm{in}(1)$	Logical 1 level input current at $\mathrm{R}_{\mathbf{O}(1) \text { or }}$ $R_{0(2)}$ inputs	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{i n}=2.4 \mathrm{~V} \\ & V_{i n}=5.5 \mathrm{~V} \end{aligned}$				$\begin{array}{r} 40 \\ 1 \end{array}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$\operatorname{lin}(1)$	Logical 1 level input current at A or B inputs	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$				80	μA $m A$
$1 \mathrm{in}(0)$	Logical 0 level input current at $R_{0(1)}$ or $R_{0(2)}$ inputs	$V_{\text {CC }}=$ MAX ,	$V_{\text {in }}=0.4 \mathrm{~V}$				-1.6	$m A$
Iin(0)	Logical 0 level input current at A or B inputs	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$				-3.2	$m A$
${ }^{\prime} \mathrm{OS}$	Short circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX ,	$V_{\text {out }}=0$	$\begin{aligned} & \text { S5493 } \\ & \text { N7493 } \end{aligned}$	$\begin{aligned} & -20 \\ & -18 \end{aligned}$		$\begin{aligned} & -57 \\ & -57 \end{aligned}$	$\begin{aligned} & m A \\ & m A \end{aligned}$
${ }^{1} \mathbf{C C}$	Supply current	$V_{C C}=M A X$,	$V_{\text {in }}=4.5 \mathrm{~V}$	$\begin{aligned} & \text { S5493 } \\ & \text { N7493 } \end{aligned}$		$\begin{aligned} & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 46 \\ & 53 \end{aligned}$	$\begin{aligned} & m A \\ & m A \end{aligned}$

SWITCHING CHARACTERISTICS, $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum frequency of input count pulses	$C_{L}=16 \mathrm{pF}$,	$R_{L}=400 \Omega$	10	18		MHz
$t^{\text {tpd }} 1$	Propagation delay time to logical 1 level from input count pulse to output D	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		75	135	ns
${ }^{\text {todo }}$	Propagation delay time to logical 0 level from input count pulse to output D	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		76	135	ns

- For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
- All typiceil values are at $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}$.
t Not more than one output should be shorted at a time.

