DESCRIPTION

The 54/7495 is a monolithic universal 4-Bit Shift Register designed with standard TTL techniques. The circuit lavout consists of 4 R-S master-slave flip-flops, 4 AND-QR-INVERT gates, and 6 inverters configured to form a versatile register which will perform right-shift, left-shift, or parallel-in, parallel-out operations depending on the logical input level to the mode control.

Right-shift operations are performed when a logical 0 level is applied to the mode control. Serial data is entered at the serial input $\mathrm{D}_{\mathbf{s}}$ and shifted one position right on each clock 1 pulse. In this mode, clock 2 and parallal inputs D_{A} thru D_{D} are inhibited.

Parallel-in, parallel-out operations are performed when a logical 1 level is applied to the mode control. Parallel data is entered at parallel inputs D_{A} thru D_{D} and is transferred to the date outputs A_{0} thru D_{0} on each clock 2 pulse. In this mode, shift-left operations may be implemented by externally tying the output of each flipflop to the parallel input of the previous flip-flop (D_{0} to D_{C} and etc.), with serial data entry at input D_{D}.

Information must be present at the R-S inputs prior to clocking and transfer of data occurs on the falling edge of the clock pulse.

DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

LOGIC DIAGRAM
\square

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
$\begin{array}{ll}\text { Supply Voltage VCC } & \text { S5495 Circuits } \\ \text { N7495 Circuits }\end{array}$	$\begin{gathered} 4.5 \\ 4.75 \end{gathered}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	5.5 5.25	$\begin{aligned} & v \\ & v \end{aligned}$
Normalized Fan-Out From Each Output 55495 Circuits			10	
$\begin{array}{ll}\text { Width of Clock Pulse tpiclock) } & \text { S5495 Circuits } \\ & \text { N7495 Circuits }\end{array}$	20	10		ns
Setup Time Required at Serial, A, B, C, or D Inputs $\mathrm{t}_{\text {setup }}$	10	10		ns
Hold Time Required at Serial, A, B, C, or D Inputs thold Logical 0 Level Setup Time Required at Mode ${ }^{\text {Control }}$	0	10		ns
(With Respect to Clock 1 inputs)	15			ns
Logical 1 level Setup Time Required at Mode Control (With Respect to Clock 2 input)	15			ns
Logical 0 Level Setup Time Required at Mode Control (With Respect to Clock 2 input)	6			ns
Logical 1 Level Setup Time Required at Mode Control (With Respect to Clock 1 input)	6			ns

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS*	MIN	TYP**	MAX	UNIT
$V_{\text {in }}(1)$	Input voltage required to ensure logical 1 at any input terminal	$\mathbf{V}_{\text {CC }}=$ MIN	2			V
$v_{\text {in }}(0)$	Input voltage required to ensure logical 0 at any input terminal	$V_{\mathbf{C C}}=\mathrm{MIN}$			0.8	V
$V_{\text {out(1) }}$	Logical 1 output voltage	$V_{\text {CC }}=$ MIN, $I_{\text {load }}=-800 \mu \mathrm{~A}$	2.4			v
$V_{\text {out (0) }}$	Logical 0 output voltage Logical 0 level input current	$V_{C C}=$ MIN, $I_{\text {sink }}=16 \mathrm{~mA}$			0.4	V
$I_{\text {in }(0)}$	at any input except mode control	$V_{C C}=M A X, V_{\text {in }}=0.4 V$			-1.6	mA
$1 \mathrm{in}(0)$	Logical 0 level input current at mode control	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\text {in }}=0.4 \mathrm{~V}$			-3.2	mA
$I_{i n}(1)$	Logical 1 level input current at any input except mode control	$\begin{aligned} & V_{C C}=M A X, V_{\text {in }}=2.4 V \\ & V_{C C}=M A X, V_{\text {in }}=6.6 V \end{aligned}$			40 1	μA $m A$
	Logical 1 level input current	$V_{\text {CC }}=M A X, V_{\text {in }}=2.4 \mathrm{~V}$			80	$\mu \mathrm{A}$
in(1)	at mode control	$V_{C C}=M A X, V_{\text {in }}=5.5 \mathrm{~V}$			1	mA
IOS	Short-circuit output current ${ }^{\dagger}$	$V_{C C}=$ MAX	-18		-57	mA
${ }^{1} \mathrm{Cc}$	Supply current	$\mathrm{V}_{\text {CC }}=$ MAX \quad N7495	39	50	63	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum shift frequency	$C_{L}=16 \mathrm{pF}$,	$R_{L}=400 \Omega$	25	36		MHz
${ }^{t} \text { pd1 }$	Propagation delay time to logical 1 level from clock 1 or clock 2 to outputs	$C_{L}=15 p F$	$R_{L}=400 \Omega$		18	27	ns
${ }^{t_{p d O}}$	Propagation delay time to logical 0 level from clock 1 or clock 2 to outputs	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		21	32	ns

- For conditions shown as MIN or MAX, use the approprlate value specifled under recommended operating conditions for the applicable circuit type.
- All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
\dagger Not more than one output should be shorted at a time.

