4-BIT RIGHT-SHIFT | S5495 **LEFT-SHIFT REGISTER**

S5495-A,F • N7495-A,F

DIGITAL 54/74 TTL SERIES

DESCRIPTION

The 54/7495 is a monolithic universal 4-Bit Shift Register designed with standard TTL techniques. The circuit layout consists of 4 R-S master-slave flip-flops, 4 AND-OR-INVERT gates, and 6 inverters configured to form a versatile register which will perform right-shift, left-shift, or parallel-in, parallel-out operations depending on the logical input level to the mode control.

Right-shift operations are performed when a logical 0 level is applied to the mode control. Serial data is entered at the serial input D_S and shifted one position right on each clock 1 pulse. In this mode, clock 2 and parallel inputs D_A thru D_D are inhibited.

Parallel-in, parallel-out operations are performed when a logical 1 level is applied to the mode control. Parallel data is entered at parallel inputs D_A thru D_D and is transferred to the data outputs Ao thru Do on each clock 2 pulse. In this mode, shift-left operations may be implemented by externally tying the output of each flipflop to the parallel input of the previous flip-flop (D $_0$ to D $_C$ and etc.), with serial data entry at input D_D.

Information must be present at the R-S inputs prior to clocking and transfer of data occurs on the falling edge of the clock pulse.

PIN CONFIGURATIONS

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage V _{CC} (See Note 1):	S5495 Circuits	4.5	5	5.5	V
3 CC	N7495 Circuits	4.75	5	5.25	l v
Normalized Fan-Out From Each Output		1		10	
Width of Clock Pulse tp(clock)	S5495 Circuits	20	10	l .	ns
	N7495 Circuits	15	10	Ĭ	ns
Setup Time Required at Serial, A, B, C, o	10	10	l	ns	
Hold Time Required at Serial, A, B, C, o	r D Inputs thold	0	10	1	ns
Logical O Level Setup Time Required at				l .	
(With Respect to Clock 1 inputs)		15		1	ns
Logical 1 level Setup Time Required at M	Node Control			l	
(With Respect to Clock 2 input)		15		1	ns
Logical 0 Level Setup Time Required at	Mode Control			i .	
(With Respect to Clock 2 input)		5		ł	ns
Logical 1 Level Setup Time Required at	Mode Control				
(With Respect to Clock 1 input)		5			ns

NOTES:

- 1. Voltage values are with respect to network ground terminal.
- 2. Input voltages must be zero or positive with respect to network ground terminal.

SIGNETICS DIGITAL 54/74 TTL SERIES - \$5495 ● N7495

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*	MIN	TYP**	MAX	UNIT
V _{in(1)}	Input voltage required to ensure logical 1 at any input terminal	V _{CC} = MIN	2		-	V
V _{in (0)}	Input voltage required to ensure logical 0 at any input terminal	V _{CC} = MIN			8.0	V
V _{out(1)}	Logical 1 output voltage	$V_{CC} = MIN$, $I_{load} = -400\mu A$	2.4			v
V _{out(0)}	Logical 0 output voltage Logical 0 level input current	V _{CC} = MIN, I _{sink} = 16mA	*		0.4	\ \ \ \
¹ in(0)	at any input except mode control	$V_{CC} = MAX, V_{in} = 0.4V$			-1.6	mA
lin(0)	Logical 0 level input current at mode control	V _{CC} = MAX, V _{in} = 0.4V			-3.2	mA
⁽ in(1)	Logical 1 level input current at any input except mode control	V _{CC} = MAX, V _{in} = 2.4V V _{CC} = MAX, V _{in} = 5.5V			40 1	μA mA
I _{in(1)}	Logical 1 level input current	V _{CC} = MAX, V _{in} = 2.4V			80	μΑ
	at mode control	V _{CC} = MAX, V _{in} = 5.5V			1	mA
os	Short-circuit output current†	V _{CC} = MAX	-18		-57	mA
^I cc	Supply current	V _{CC} = MAX N7495	39	50	63	mA

SWITCHING CHARACTERISTICS, V_{CC} = 5V, T_A = 25°C, N = 10

PARAMETER		TE	TEST CONDITIONS		TYP	MAX	UNIT
f _{max}	Maximum shift frequency	C _L = 15pF,	R _L = 400Ω	25	36		MHz
t _{pd1}	Propagation delay time to logical 1 level from clock 1	C _L = 15pF,	$R_1 = 400\Omega$		18	27	ns
Par	or clock 2 to outputs		L				
	Propagation delay time to						
^t pd0	logical 0 level from clock 1 or clock 2 to outputs	C _L = 15pF,	R _L = 400 Ω		21	32	ns

^{*} For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable circuit type.

^{**}All typical values are at V_{CC} = 5V, T_A = 25°C.

†Not more than one output should be shorted at a time.