DESCRIPTION

This shift register consists of five R-S master-slave flip-flops connected to perform parallel-to-serial or serial-to-parallel conversion of binary data. Since both inputs and outputs to all flip-flops are accessible, parallel-in/parallel-out or serial-in/serial-out operation may be performed.

All flip-flops are simultaneously set to the logical 0 state by applying a logical 0 voltage to the clear input. This condition may be applied independent of the state of the clock input.

The flip-flops may be independently set to the logical 1 state by applying a logical 1 to both the preset input of the specific flip-flop and the common preset input. The common preset input is provided to allow flexibility of either setting each flip-flop independently or setting two or more flip-flops simultaneously. Preset is also independent of the state of the clock input or clear input.

Transfer of information to the output pins occurs when the clock input goes from a logical 0 to a logical 1 . Since the flip-flops are R-S master-slave circuits, the proper information must appear at the R-S inputs of each flip-flop prior to the rising edge of the clock input voltage waveform. The serial input provides this information to the first flip-flop, while the outputs of the subsequent flip-flops provide information for the remaining R-S inputs. The clear input must be at a logical 1 and the preset input must be at a logical 0 when clocking occurs.

DIGITAL 54/74 TTL SERIES

PIN CONFIGURATIONS

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS

	MIN	TYP	MAX	UNIT
Supply Voltage VCC S5496 Circuits	4.5	5	5.5	V
N7496 Circuits	4.75	5	5.25	V
Normalized Fan-Out from Output			10	
Width of Clock Pulse, t_{p} (clock)	35			ns
Width of Clear Pulse, $\mathrm{t}_{\mathrm{p} \text { (clear) }}$	30			ns
Width of Preset Pulse, t_{p} (preset)	30			ns
Serial Input Setup Time, $\mathrm{t}_{\text {setup }}$	30			ns
Serial Input Hold Time, thold	0			ns

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

SWITCHING CHARACTERISTICS, $\mathbf{V}_{\mathbf{C C}}=\mathbf{5 V}, \mathbf{T}_{\mathbf{A}}=\mathbf{2 5} \mathbf{C}, \mathbf{N}=\mathbf{1 0}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
$f_{\text {max }}$	Maximum clock frequency	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$	10			MHz
${ }^{\text {tpd }} 1$	Propagation delay time to logical 1 level from clock to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		25	40	ns
$t_{\text {pd0 }}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$		25	40	ns
${ }^{\mathbf{t} \mathbf{p d 1}}$	Propagation delay time to logical 1 level from preset to output	$C_{L}=15 \mathrm{pF}$,	$R_{L}=400 \Omega$			35	ns
$t_{\text {pdO }}$	Propagation delay time to logical 0 level from preset to output	$C_{L}=15 p F$,	$R_{L}=400 \Omega$		28	40	ns
${ }^{\text {tpd0 }}$	Propagation delay time to logical 0 level from clear to output	$C_{L}=15 p F$,	$R_{L}=400$			55	ns

[^0]
[^0]: - For conditions shown as MIN or MAX, use the approprlate value specified under recommended operating conditions for the applicable circuit type.
 - All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.
 + Not more than one output should be shorted at a time.

