DUAL J-K EDGE-TRIGGERED FLIP-FLOP $\mathbf{S 5 4 H 1 0 6}$

S54H106-B,F,W • N54H106-B,F
DIGITAL 54/74 TTL SERIES

PIN CONFIGURATION

CLOCK WAVEFORM

BLOCK DIAGRAM (each flip-flop)

RECOMMENDED OPERATING CONDITIONS

		MIN	NOM	MAX	UNIT
Supply Voltage VCC: S54H106 Circuits		4.5	5	5.5	v
N74H106 Circuits		4.75	5	5.25	\checkmark
Operating Free-Air Temperature Range, T_{A} :	S54H106 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
	N74H106 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fan-Out From Each Output, N				10	
Width of Clock Pulse, $t_{\text {p }}$ (clock)		10			ns
Width of Preset Pulse, t_{p} (preset)		16			ns
Width of Clear Pulse, t_{p} (clear)		16			ns
Input Setup Time, $\mathrm{t}_{\text {setup }}$ (See Above):	Logical 1	10			ns
	Logical 0	13			ns
Input Hold Time, thold		0			ns
Clock Pulse Transition Time, to				150	ns

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

	PARAMETER	TEST CONDITIONS ${ }^{\dagger}$		MIN	TYP§	MAX	UNIT
$V_{\text {in }}(1)$	Input voltage required to ensure logical 1 at any input terminal			2			V
$V_{\text {in(0) }}$	Input voltage required to ensure logical \mathbf{O} at any input terminal					0.8	V
Vout(1)	Logical 1 output voltage	$\mathrm{V}_{\text {CC }}=\mathrm{MIN}$,	$\mathrm{I}_{\text {load }}=\mathbf{5 0 0} \mu \mathrm{A}$	2.4	3.2		V
Vout(0)	Logical 0 output voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$,	$\mathrm{I}_{\text {sink }}=\mathbf{2 0} \mathbf{~ m A}$		0.25	0.4	v
$1 \mathrm{in}(0)$	Logical 0 level input current at J, K, preset, or clear	$V_{C C}=$ MAX,	$V_{\text {in }}=0.4 \mathrm{~V}$		-1	-2	mA
$1 \mathrm{in}(0)$	Logical 0 level input current at clock	$V_{C C}=$ MAX,	$V_{\text {in }}=0.4 \mathrm{~V}$		-3	-4,8	mA
	Logical 1 level input current at	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$			50	$\mu \mathrm{A}$
lin(1)	J or K	$V_{C C}=$ MAX,	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$			1	mA
	Logical 1 level input current at	$V_{C C}=$ MAX,	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$			100	$\mu \mathrm{A}$
In(1)	present or clear	$V_{C C}=$ MAX,	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$			1	mA
	Logical 1 level input current at	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=2.4 \mathrm{~V}$	0		-1	mA
lin(1)	clock	$V_{C C}=M A X$,	$\mathrm{V}_{\text {in }}=5.5 \mathrm{~V}$			1	mA
Ios	Short-circuit output current \ddagger	$V_{C C}=M A X$,	$v_{\text {in }}=0$	-40		-100	mA
ICC	Supply current	$V_{C C}=\mathbf{M A X}$			40	76	mA

tFor conditions shown as MIN or MAX, use the appropriate value specifled under recommended operating conditions for the applicable device type.
\ddagger Not more than one output should be shorted at a time, and duration of short-circuit test should not exceed 1 second.
§All typlcal values are at $V_{C C}=6 \mathrm{~V}, T_{A}=26^{\circ} \mathrm{C}$.

SWITCHING CHARACTERISTICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=\mathbf{1 0}$

	PARAMETER	TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{1}$ clock	Maximum input clock frequency	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$	40	50		MHz
${ }^{\text {t pd }} 1$	Propagation delay time to logical 1 tevel from preset or clear to out.put	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		8	12	ns
${ }^{\text {todO }}$	Propagation delay time to logical 0 level from preset or clear to output (clock low)	$C_{L}=25 \mathrm{pF}$.	$\mathrm{R}_{\mathrm{L}}=280 \Omega$		23	35	ns
${ }^{t} \mathrm{pd} 0$	Propagation delay time to logical 0 level from preset or clear to output (clock high)	$C_{L}=25 \mathrm{pF}$.	$R_{L}=280 \Omega$		15	20	ns
${ }^{t} \mathrm{pd} 11$	Propagation delay time to logical 1 level from clock to output	$C_{L}=25 \mathrm{pF}$,	$\mathrm{R}_{\mathbf{L}}=\mathbf{2 8 0} \Omega$	5	10	15	ns
${ }^{1} \mathrm{pdO}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$	8	16	20	ns

