J-K MASTER-SLAVE FLIP-FLOP
S54H71
N74H71
S54H71-A,F,W • N74H71-A,F
DIGITAL 54/74 TTL SERIES

DESCRIPTION

These J-K flip-flops are based on the master-slave principle. The AND-OR gate inputs for entry into the master section are controlled by the clock pulse. The clock pulse also regulates the circuitry which connects the master and slave sections. The sequence of operation is as follows:

1. Isolate slave from master
2. Enter information from AND-OR gate inputs to master
3. Disable AND-OR gate inputs
4. Transfer information from master to slave.

Logical state of J and K inputs must not be allowed to change when the clock pulse is in a high state.

TRUTH TABLE

NOTES:
. $K=(K 1 A \cdot K 1 B)+(K 2 A$
3. $t_{n}=$ Bit time before clock pulse.
4. $t_{n}+1=$ Bit time after clock pulse.

PIN CONFIGURATIONS

SCHEMATIC

NOTE: Component values shown are nominal.

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltege $\mathrm{V}_{\text {CC }}$: S54H71 Circuits	4.5	5	5.5	V
N74H71 Circuits	4.75	5	5.25	V
Operating Free-Air Temperature Range, $\mathbf{T A}_{\text {A }}$: S54H71 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
N74H71 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fan-Out from each Output, N			10	
Width of Clock Pulse, ${ }_{\text {p }}$ (clock)	12			ns
Width of Preset Pulse, $t_{p(p r e s e t)}$	16			ns
Input Setup Time, ${ }_{\text {setup }}$ (See Above)	$>t_{\text {p }}$ (clock)			
Input Hold Time, thold	0			

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP ${ }^{\dagger}$	MAX	UNIT
$V_{\text {in (1) }}$	Input voltage required to ensure logical 1 at any input terminal			2			V
$V_{\text {in }}(0)$	Input voltage required to ensure logical 0 at any input terminal					0.8	V
$V_{\text {out (1) }}$	Logical 1 output voltage		$I_{\text {load }}=-500 \mu \mathrm{~A}$	2.4			V
Vout(0)	Logical 0 output voltage	$V_{C C}=M I N,$	$I_{\text {sink }}=20 \mathrm{~mA}$			0.4	V
$I_{i n}(0)$	Logical 0 level input current at $J 1 A$, J1B, J2A, J2B, K1A, K1B, K2A, or K2B	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$			-2	mA
$I_{\text {in (}}(0)$	Logical 0 level input current at preset	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$			-6	mA
$1 \mathrm{in}(0)$	Logical \mathbf{O} level input current at clock Logical 1 level input current at J1A,	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$			-4	mA
$I_{\text {in (1) }}$	J1B, J2A, J2B, K1 A, K1B, K2A,	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.5 \mathrm{~V} \end{aligned}$			50	μA $m A$
$l_{i n(1)}$	Logical 1 level input current at preset	$\begin{aligned} & V_{C C}=M A X \\ & V_{C C}=M A X \end{aligned}$	$\begin{aligned} & V_{\text {in }}=2.4 \mathrm{~V} \\ & V_{\text {in }}=5.6 \mathrm{~V} \end{aligned}$			150 1	μA $m A$
	Logical 1 level input current at clock	$V_{C C}=M A X$	$v_{i n}=2.4 \mathrm{~V}$			100	$\mu \mathrm{A}$
in(1)	Logical 1 level input current at clock	$V_{C C}=M A X,$	$V_{i n}=5.6 \mathrm{~V}$			1	mA
${ }^{\prime} \mathrm{OS}$	Short-circuit output current **	$V_{C C}=M A X$,	$v_{\text {in }}=0$	-40		-100	mA
${ }^{1} \mathrm{CC}$	Supply current	$V_{C C}=$ MAX			19	30	mA

SWITCHING CHARACTERISTICS, $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
${ }^{\text {f clock }}$	Maximum clock frequency	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$	25	30		MHz
${ }^{\mathbf{t}} \mathbf{\text { pd1 }}$	Propagation delay time to logical 1 level from preset to output	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		6	13	ns
${ }^{\text {todO }}$	Propagation delay time to logical 0 level from preset to output	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$		12	24	ns
${ }^{\mathbf{t}} \mathrm{pd} 1$	Propagation delay time to logical 1 level from clock to output	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$	6	14	21	ns
${ }^{t} \mathrm{pdO}$	Propagation delay time to logical 0 level from clock to output	$C_{L}=25 \mathrm{pF}$,	$R_{L}=280 \Omega$	10	22	27	ns

[^0]
[^0]: - For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 - Not more than one output should be shorted at a time, and duration of short-circuit test should not exceed 1 second.
 t All typical values are at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$.

