DESCRIPTION

These dual J-K flip-flops are based on the master-slave principle. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the circuitry which connects the master and slave sections. The sequence of operation is as follows:

1. Isolate slave from master
2. Enter information from J and K inputs to master
3. Disable J and K inputs
4. Transfer information from master to slave.

Logical state of J and K inputs must not be allowed to change when the clock pulse is in a high state.

TRUTH TABLE

OG			
		${ }^{\text {t }}$ +1	NOTES: 1. $\mathbf{t}_{\mathbf{n}}=$ bit time before clock pulse 2. $\mathbf{t}_{\mathrm{n}+1}=$ bit time after clock pulse
J	k	0	
0	0	O_{n}	
0	1	0	
1	0	1	
1	1	$\bar{\alpha}_{n}$	

SCHEMATIC (each flip-flop)

DIGITAL 54/74 TTL SERIES
PIN CONFIGURATIONS

CLOCK WAVEFORM

POSITIVE LOGIC

Low input to preset sets Q to logical 1
Low input to clear sets Q to logical 0
Clear and preset are independent of clock

NOTE: Component values shown are nominal.

RECOMMENDED OPERATING CONDITIONS

	MIN	NOM	MAX	UNIT
Supply Voltage $\mathrm{V}_{\text {CC }}$: S54H76 Circuits	4.5	5	5.5	V
N74H76 Circuits	4.75	5	5.25	V
Operating Free-Air Temperature Range, $\mathbf{T}_{\mathbf{A}}: \quad$ S54H76 Circuits	-55	25	125	${ }^{\circ} \mathrm{C}$
N74H76 Circuits	0	25	70	${ }^{\circ} \mathrm{C}$
Normalized Fan-Out from each Output, N			10	
Width of Clock Pulse, $t_{\text {p }}$ (clock)	12			ns
Width of Preset Pulse, tp(preset)	16			ns
Width of Clear Pulse, t_{p} (clear)	$>t_{\text {p }}$ (clock)			
Input Setup Time, ${ }_{\text {setup }}$ (See above)				
Input Hold Time, thold	0			

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

PARAMETER		TEST CONDITIONS*		MIN	TYP ${ }^{\dagger}$	MAX	UNIT
$V_{\text {in(1) }}$	Input voltage required to ensure logical 1 at any input terminal	$V_{C C}=$ MIN		2			v
$V_{\text {in }}(0)$	Input voltage required to ensure logical 0 at any input terminal	$V_{C C}=$ MIN				0.8	v
$V_{\text {out(1) }}$	Logical 1 output voltage	$V_{C C}=$ MIN,	$I_{\text {load }}=-500 \mu \mathrm{~A}$	2.4			V
$\mathrm{V}_{\text {out(0) }}$	Logical 0 output voltage	$V_{C C}=$ MIN,	$l_{\text {sink }}=20 \mathrm{~mA}$			0.4	v
$\operatorname{lin}(0)$	Logical 0 level input current at J, K, or clock	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$			-2	mA
$\operatorname{lin}(0)$	Logical O level input current at clear or preset	$V_{C C}=M A X$,	$V_{\text {in }}=0.4 \mathrm{~V}$			-4	mA
$\operatorname{lin}(1)$	Logical 1 level input current at J.K. or clock	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{i n}=2.4 \mathrm{~V} \\ & V_{i n}=5.5 \mathrm{~V} \end{aligned}$			$\begin{array}{r} 50 \\ 1 \end{array}$	$\begin{aligned} & \mu A \\ & m A \end{aligned}$
Iin(1)	Logical 1 level input current at clear or preset	$\begin{aligned} & V_{C C}=M A X, \\ & V_{C C}=M A X, \end{aligned}$	$\begin{aligned} & V_{i n}=2.4 \mathrm{~V} \\ & V_{i n}=5.5 \mathrm{~V} \end{aligned}$			$\begin{array}{r} 100 \\ 1 \end{array}$	$\mu \mathrm{A}$ $m A$
'os	Short circuit output current**	$V_{C C}=M A X$,	$v_{\text {in }}=0$	-40		-100	mA
${ }^{\prime} \mathrm{Cc}$	Supply current	$V_{C C}=M A X$,	$V_{\text {in }}=4.5 \mathrm{~V}$		32	50	mA

SWITCHING CHARACTERISTICS, $\mathbf{V C C}_{\text {C }}=\mathbf{5 V}, \mathbf{T}_{\mathbf{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{N}=10$

PARAMETER		TEST CONDITIONS		MIN	TVP	MAX	UNIT
fclock	Maximum clock frequency	$C_{L}=25 p F$,	$R_{L}=280 \Omega$	25	30		MHz
${ }^{\text {p }}$ pd1	Propagation delay time to logical 1 level from clear or preset to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		6	13	ns
${ }^{\text {todo }}$	Propagation delay time to logical 0 level from clear or preset to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		12	24	ns
${ }^{\text {tpd }} 1$	Propagation delay time to logical 1 level from clock to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		16	21	ns
${ }^{t} \mathrm{pdO}$	Propagation delay time to logical O level from clock to output	$C_{L}=25 p F$,	$R_{L}=280 \Omega$		22	27	ns

[^0]
[^0]: - For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.
 t All typical values are at $V_{C C}=5 V, T_{A}=25^{\circ} \mathrm{C}$.
 * Not more then one output should be shorted at a time.

