## DESCRIPTION

These monolithic Schottky-barrier-diode-clamped TTL circuits are high-performance multiplexers which are significantly faster than the S54153/N74153. As an example, the two-gate-level delay from the data inputs to the output is only 8.5 nanoseconds maximum compared to 18 or 23 nanoseconds maximum for the standard-speed part. Overall, the guaranteed delay times for the S54S153/N74S153 represent approximately a $100 \%$ improvement over standard TTL with only a $12 \%$ increase in maximum d-c power consumption. In many cases, the S54S153 or N74S153 can plug into existing systems designed for S54153 or N74153.

These data selectors/multiplexers are fully compatible for use with most standard, high-speed, and low-power TTL and DTL circuits. Each diode-clamped input represents only one normalized Series 54S/74S load, and full fan-out to 10 normalized Series 54S/74S loads is available from each of the outputs at low logic levels. A fan-out to 20 normalized Series 54S/74S loads is provided at high logic levels to facilitate connection of unused inputs to used inputs. Typical power dissipation is $\mathbf{2 2 5}$ milliwatts.

The S54S153 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$; the N 74 S 153 is characterized for operation from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.

## FEATURES

- FULL SCHOTTKY-BARRIER-DIODE CLAMPING FOR VERY HIGH SPEEDS


## - PERMITS MULTIPLEXING FROMN LINES TO 1 LINE

- SAME PIN ASSIGNMENTS AS S54153 AND N74153
- STROBE (ENABLE) LINE PROVIDED FOR CASCADING IN LINES TO $n$ LINES)
- TYPICAL AVERAGE PROPAGATION DELAY TIMES:

DATA INPUT TO OUTPUT (2 GATE LEVELS) 6 ns STROBE INPUT TO OUPUT (3 GATE LEVELS) 9.5 ns SELECT INPUT TO OUTPUT (4 GATE LEVELS) 12 ns

- HIGH FAN-OUT LOW-IMPEDANCE TOTEM-POLE OUTPUTS
- FULLY COMPATIBLE WITH MOST TTL AND DTL CIRCUITS


## DIGITAL 54/74 TTL SERIES

## PIN CONFIGURATION

J OR N DUAL-IN-LINE
OR W FLAT PACKAGE (TOP VIEW)


```
LOGIC: SEE FUNCTION TABLE
```


## FUNCTION TABLE

| SELECT <br> INPUTS | DATA INPUTS |  |  | STROBE | OUTPUT |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B | A | C0 | C1 | C2 | C3 | G | Y |
| X | X | X | X | X | X | H | L |
| L | L | L | X | X | X | L | L |
| L | L | H | X | X | X | L | H |
| L | H | X | L | X | X | L | L |
| L | H | X | H | X | X | L | H |
| H | L | X | X | L | X | L | L |
| H | L | X | X | H | X | L | H |
| H | H | X | X | X | L | L | L |
| H | H | X | X | X | H | L | H |

[^0]RECOMMENDED OPERATING CONDITIONS

|  |  |  | S54S153 |  |  | N74S153 |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | NOM | MAX | MIN | NOM | MAX |  |
| Supply voltage, $\mathrm{V}_{\mathrm{CC}}$ |  |  | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V |
| Normalized fan-out fromi each output, $N$ |  | High logic level |  |  | 20 |  |  | 20 |  |
|  |  | Low logic level |  |  | 10 |  |  | 10 |  |
| Operating free-air temperature range, $\mathrm{T}_{\mathrm{A}}$ |  |  | -55 |  | 125 | 0 |  | 70 | ${ }^{\circ} \mathrm{C}$ |

ELECTRICAL CHARACTERISTICS (over recommended operating free-air temperature range unless otherwise noted)

| PARAMETER |  | TEST CONDITIONS* |  |  | MIN | TYP** | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {IH }}$ | High-level input voltage |  |  |  | 2 |  |  | V |
| $V_{\text {IL }}$ | Low-level input voltage |  |  |  |  |  | 0.8 | V |
| $V_{1}$ | Input clamp Yooltage | $\mathrm{V}_{\text {CC }}=\mathrm{MIN}$, | $\mathrm{I}_{1}=-18 \mathrm{~mA}$ |  |  |  | -1.2 | V |
|  | High-level out Jut voltage | $\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}$, | $\mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$, | Series 54S | 2.5 | 3.4 |  | V |
| VOH | High-level out | $V_{\text {II }}=0.8 \mathrm{~V}$. | $\mathrm{I}^{\mathrm{OH}}=-1 \mathrm{~mA}$ | Series 74S | 2.7 | 3.4 |  |  |
| $\mathrm{V}_{\text {OL }}$ | Low-level outhut voltage | $\begin{aligned} & V_{C C}=\mathrm{MIN}, \\ & V_{I L}=0.8 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & V_{I H}=2 \mathrm{~V}, \\ & \mathrm{IOL}^{\prime}=20 \mathrm{~mA} \end{aligned}$ |  |  |  | 0.5 | V |
| 11 | Input current at maximum input voltage | $V_{C C}=$ MAX | $\mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  |  | 1 | mA |
| $1 / \mathrm{H}$ | High-level input current | $V_{C C}=$ MAX, | $\mathrm{V}_{1}=2.7 \mathrm{~V}$ |  |  |  | 50 | $\mu \mathrm{A}$ |
| $1 / \mathrm{L}$ | Low-level input current | $\mathrm{V}_{\text {CC }}=$ MAX , | $\mathrm{V}_{1}=0.5 \mathrm{~V}$ |  |  |  | -2 | mA |
| IOS | Short-circuit output current $\ddagger$ | $\mathrm{V}_{\text {CC }}=$ MAX |  |  | -40 |  | -100 | mA |
| ${ }^{\prime} \mathrm{CCL}$ | Supply current, low level output | $V_{C C}=M A X$. | See Note 1 |  |  | 45 | 70 | mA |

- For conditions shown as MIN or MAX, use the appropriate value specifled under recommended operating conditions for the applicable device type.
* All typical values are at $V_{C C}=5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$.
$\ddagger$ Not more than one output should be shorted at a time.
NOTE: 1: ICCL is measured with the outputs open and all inputs grounded.

SWITCHING CHARACTERI\$TICS, $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathbf{A}}=25^{\circ} \mathrm{C}, \mathrm{N}=10$

| PARAMETER | HROM (INPUT) | TO (OUTPUT) | TEST CONDITIONS | MIN | TYP | MAX | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{\text {tPLH }}$ | Data | $Y$ | $\begin{gathered} C_{L}=15 \mathrm{pF}, R_{\mathrm{L}}=280 \Omega \\ \text { See Note } 2 \end{gathered}$ |  | 6 | 9 | ns |
| tPHL | Data | $Y$ |  |  | 6 | 9 | ns |
| ${ }^{\text {tPLH }}$ | Select | $Y$ |  |  | 11.5 | 18 | ns |
| ${ }_{\text {t PHL }}$ | Select | Y |  |  | 12 | 18 | ns |
| ${ }^{\text {t PLH }}$ | Strobe | $Y$ |  |  | 10 | 15 | ns |
| ${ }^{\text {tPHL }}$ | Strobe | Y |  |  | 9 | 13.5 | ns |

$t_{\text {PLH }} \equiv$ Propagation delay time, low-to-high-level output.
tPHL $\equiv$ Propagation delay time, high-to-low-level output.
NOTE 2: Load circuit and test waveforms are shown on page 2-293

## FUNCTIONAL BLOCK DIAGRAM


test table for note 2

| INPUTS |  |  |  |  |  |  | OUTPUT Y WAVEFORM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| B | A | C0 | C1 | C2 | C3 | G |  |
| GND | GND | INPUT | X | X | X | GND | A |
| GND | 4.5 V | X | INPUT | X | X | GND | A |
| 4.5 V | GND | X | X | INPUT | X | GND | A |
| 4.5 V | 4.5 V | X | X | X | INPUT | GND | A |
| GND | INPUT | GND | 4.5 V | X | X | GND | A |
| INPUT | GND | GND | X | 4.5 V | X | GND | A |
| GND | GND | 4.5 V | X | X | X | INPUT | B |

$X=$ Irrelevant $\quad A=1 N-P H A S E$ OUTPUT
B=OUT-OF-PHASE


[^0]:    Address inputs $A$ and $B$ are common to both sections. $H=$ High level, $L=$ Low level, $X=$ Irrelevant

