FAIRCHILD

SEMICONDUCTOR

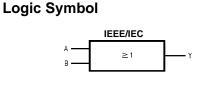
NC7S32 TinyLogic[™] HS 2-Input OR Gate

General Description

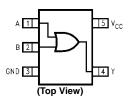
The NC7S32 is a single 2-Input high performance CMOS OR Gate. Advanced Silicon Gate CMOS fabrication assures high speed and low power circuit operation over a broad V_{CC} range. ESD protection diodes inherently guard both inputs and output with respect to the V_{CC} and GND rails. Three stages of gain between inputs and outputs assures high noise immunity and reduced sensitivity to input edge rate.

Features

■ Space saving SOT23 or SC70 5-lead package


October 1995

Revised November 1999


- High Speed; t_{PD} 3.5 ns typ
- E Low Quiescent Power; I_{CC} < 1 μ A
- Balanced Output Drive; 2 mA I_{OL}, -2 mA I_{OH}
- Broad V_{CC} Operating Range: 2V–6V
- Balanced Propagation Delays
- Specified for 3V Operation

Ordering Code:

Order Number	Package Number	Package Top Mark	Package Description	Supplied As
NC7S32M5	MA05B	7S32	5-Lead SOT23, JEDEC MO-178, 1.6mm	250 Units on Tape and Reel
NC7S32M5X	MA05B	7S32	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel
NC7S32P5	MAA05A	S32	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	250 Units on Tape and Reel
NC7S32P5X	MAA05A	S32	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel

Connection Diagram

Pin Descriptions

Pin Names	Description
A, B	Inputs
Y	Output

	Y=A+B		
Inp	Output		
Α	В	Y	
L	L	L	
L	Н	н	
Н	L	н	
Н	Н	н	

H = HIGH Logic Level L = LOW Logic Level

TinyLogic™ is a trademark of Fairchild Semiconductor Corporation.

© 1999 Fairchild Semiconductor Corporation DS012137

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
@V _{IN} ≤ -0.5V	–20 mA
$@V_{IN} \ge V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VIN)	-0.5V to V _{CC} + 0.5V
DC Output Diode Current (I _{OK})	
@V _{OUT} < -0.5V	–20 mA
$@V_{OUT} > V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _{OUT})	–0.5V to V _{CC} + 0.5V
DC Output Source or Sink	
Current (I _{OUT})	±12.5 mA
DC V _{CC} or Ground Current per	
Output Pin (I _{CC} or I _{GND})	±25 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature (T _J)	150°C
Lead Temperature (T ₁)	
(Soldering, 10 seconds)	260°C
	260°C
(Soldering, 10 seconds)	260°C 200 mW
(Soldering, 10 seconds) Power Dissipation (P _D) @ +85°C	

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to 6.0V
Input Voltage (V _{IN})	0V to V _{CC}
Output Voltage (V _{OUT})	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
V _{CC} @ 2.0V	0 to 1000 ns
V _{CC} @ 3.0V	0 to 750 ns
V _{CC} @ 4.5V	0 to 500 ns
V _{CC} @ 6.0V	0 to 400 ns
Thermal Resistance (θ_{JA})	
SOT23-5	300°C/W
SC70-5	425°C/W

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of circuits outside the databook specifications. Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$				$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Condition
Symbol	Farameter	(V)	Min	Тур	Max	Min	Max	Units	Condition
V _{IH}	HIGH Level Input Voltage	2.0	1.50			1.50		V	
		3.0-6.0	0.7V _{CC}			0.7V _{CC}		v	
V _{IL}	LOW Level Input Voltage	2.0			0.50		0.50	V	
		3.0-6.0			0.3 V _{CC}		0.3 V _{CC}	v	
V _{ОН}	HIGH Level Output Voltage	2.0	1.90	2.0		1.90			
		3.0	2.90	3.0		2.90		V	$I_{OH} = -20 \text{ mA}$
		4.5	4.40	4.5		4.40		v	$V_{\text{IN}} = V_{\text{IH}}$
		6.0	5.90	6.0		5.90			
									$V_{IN} = V_{IH}$
		3.0	2.68	2.85		2.63		V	$I_{OH} = -1.3 \text{ mA}$
		4.5	4.18	4.35		4.13		v	$I_{OH} = -2 \text{ mA}$
		6.0	5.68	5.85		5.63			I _{OH} = -2.6 mA
V _{OL}	LOW Level Output Voltage	2.0		0.0	0.10		0.10		
		3.0		0.0	0.10		0.10	v	$I_{OL} = 20 \ \mu A$
		4.5		0.0	0.10		0.10	v	$V_{\text{IN}} = V_{\text{IL}}$
		6.0		0.0	0.10		0.10		
									$V_{IN} = V_{IL}$
		3.0		0.1	0.26		0.33	v	$I_{OL} = 1.3 \text{ mA}$
		4.5		0.1	0.26		0.33	v	$I_{OL} = 2 \text{ mA}$
		6.0		0.1	0.26		0.33		$I_{OL} = 2.6 \text{ mA}$
I _{IN}	Input Leakage Current	6.0			±0.1		±1.0	μΑ	$V_{IN} = V_{CC}, GN$
I _{CC}	Quiescent Supply Current	6.0			1.0		10.0	μΑ	V _{IN} = V _{CC} , GN

Symbol	Parameter	v _{cc}	$T_A = +25^{\circ}C$			$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Fig. No.
		(V)	Min	Тур	Max	Min	Max			
t _{PLH} ,	Propagation Delay	5.0		3.5	15			ns	$C_L = 15 \text{ pF}$	Figure 1
t _{PHL}		2.0		20	100		125		$C_L = 50 \text{ pF}$	Figure 3
		3.0		12	27		35			
		4.5		8	20		25	ns		
		6.0		7	17		21			
t _{TLH} ,	Output Transition Time	5.0		3.0	10			ns	$C_L = 15 \text{ pF}$	Figure 1
t _{THL}		2.0		25	125		155		$C_L = 50 \text{ pF}$	Figure 3
		3.0		16	35		45			
		4.5		11	25		31	ns		
		6.0		9	21		26			
CIN	Input Capacitance	Open		2	10		10	pF		
CPD	Power Dissipation Capacitance	5.0		6				pF	(Note 3)	Figure 2

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See *Figure 2*) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $\textbf{I}_{CCD} = (C_{PD})~(V_{CC})~(\textbf{f}_{IN}) + (\textbf{I}_{CC} static).$

AC Loading and Waveforms

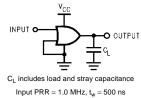
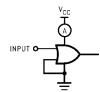
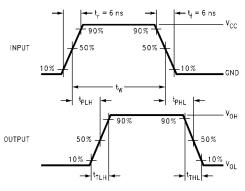
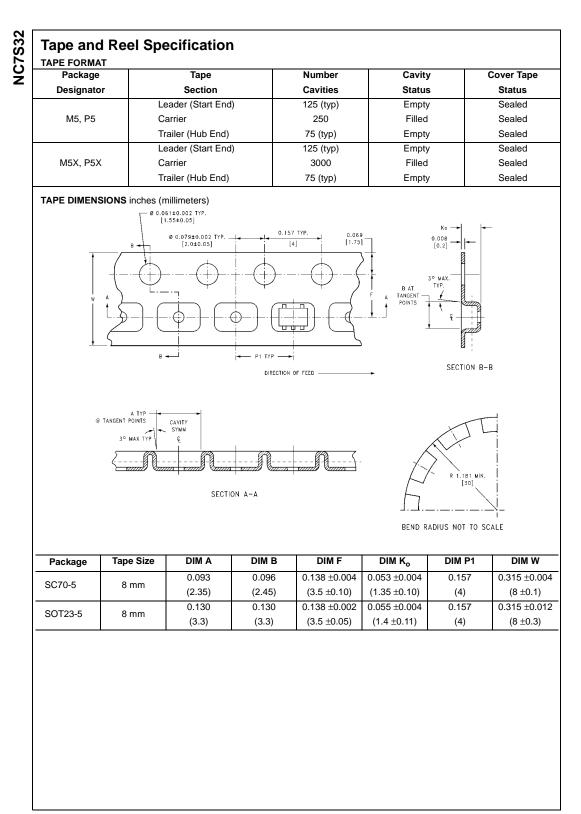
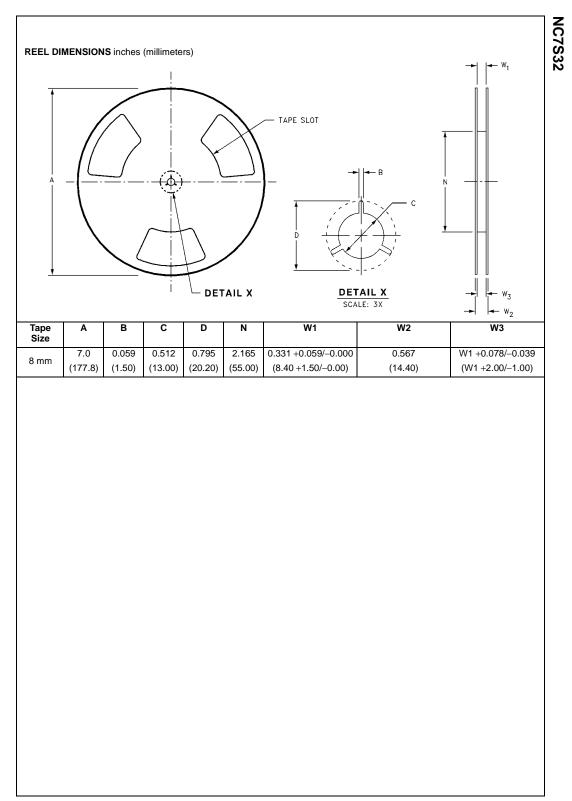
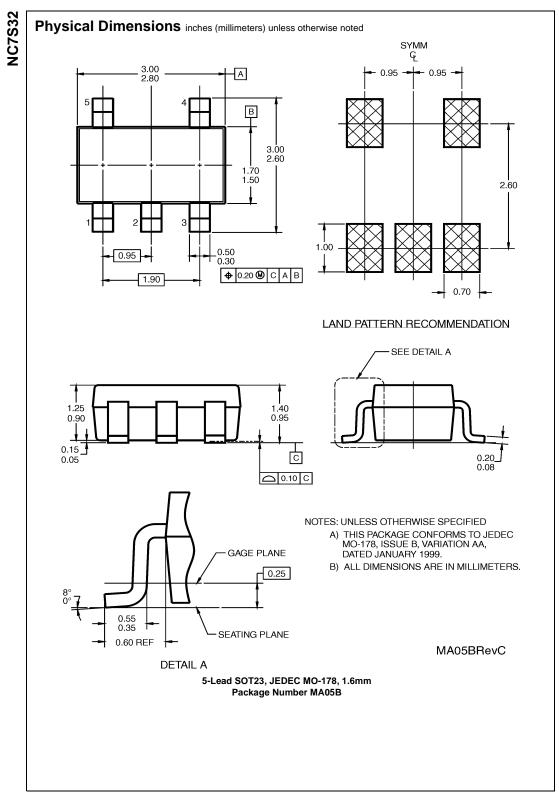
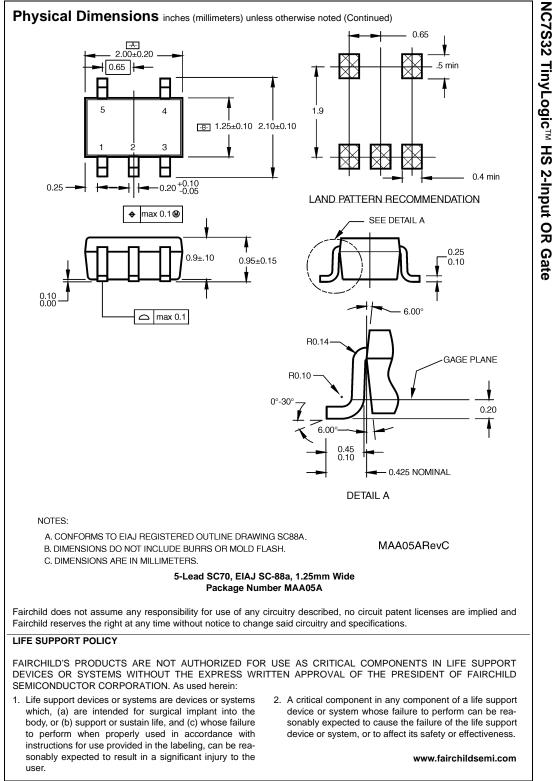



FIGURE 1. AC Test Circuit

Input = AC Waveforms; PRR = variable; Duty Cycle = 50% FIGURE 2. I_{CCD} Test Circuit


FIGURE 3. AC Waveforms

www.fairchildsemi.com

