FAIRCHILD

NC7SZ384 TinyLogic[™] UHS 1-Bit Low Power Bus Switch

General Description

Features

- **\blacksquare** 5 Ω switch connection between two ports
- Minimal propagation delay through the switch
- Low Icc
- Zero bounce in flow-through mode
- Control inputs compatible with TTL level

Ordering Code:

TinyLogi General De The NC7SZ384 p TTL-compatible b switch allows inpu	escription provides 1-bit of us switch. The	l f ultra high-spe low on resistar cted to outputs	ince of the 5Ω switch connection between with mini-	70 5-lead package en two ports
mal propagation of ground bounce no switch with a bus e switch is on and P HIGH, the switch exists between the Ordering C	bise. The devic enable (BE) sign out A is connect is open and two ports.	e is organized hal. When BE is ted to Port B. W a high-impeda	as a 1-bit Low I _{CC} LOW, the Zero bounce in flow-through Ince state Control inputs compatible wit	mode th TTL level
ground bounce no switch with a bus e switch is on and P HIGH, the switch exists between the Ordering C	bise. Th <u>e</u> devic enable (BE) sign ort A is connect is open and two ports.	e is organ <u>ized</u> nal. When BE is ted to Port B. W	as a 1-bit Low I _{CC} LOW, the Zero bounce in flow-through /hen BE is Control inputs compatible wit	mode
ground bounce no switch with a bus e switch is on and P HIGH, the switch exists between the Ordering C Order	bise. The devic enable (BE) sign out A is connect is open and two ports.	e is organized hal. When BE is ted to Port B. W a high-impeda Package	as a 1-bit Low I _{CC} LOW, the Zero bounce in flow-through Ince state Control inputs compatible wit	mode th TTL level Supplied As
ground bounce no switch with a bus e switch is on and P HIGH, the switch exists between the Ordering C Order Number NC7SZ384M5	bise. The devic enable (BE) sign ort A is connect is open and two ports. Code: Package Number MA05B	e is organ <u>ize</u> d hal. When BE is ted to Port B. W a high-impeda Package Top Mark 8Z84	as a 1-bit Low I _{CC} LOW, the Zero bounce in flow-through I Control inputs compatible with Package Description 5-Lead SOT23, JEDEC MO-178, 1.6mm	mode th TTL level Supplied As 250 Units on Tape and Reel
ground bounce no switch with a bus e switch is on and P HIGH, the switch exists between the Ordering C Order Number	bise. The devic enable (BE) sign ort A is connect is open and two ports. Code: Package Number	e is organized hal. When BE is ted to Port B. W a high-impeda Package Top Mark	as a 1-bit Low I _{CC} LOW, the Zero bounce in flow-through Then BE is Ince state Control inputs compatible with Package Description	mode th TTL level Supplied As

Logic Diagram

Connection Diagram

Pin Description

Pin Name	Description
BE	Bus Switch Enable
A	Bus A
В	Bus B

Trι	th Tab	le
	BE	Bo

BE	B _O	Function
L	A _O	Connect
Н	HIGH-Z State	Disconnect

TinyLogic™ is a trademark of Fairchild Semiconductor Corporation.

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Absolute Maximum Rat	tings(Note 1)	Recommended Operating			
Supply Voltage (V _{CC})	-0.5V to +7.0V	Conditions (Note 3)			
DC Switch Voltage (V _S)	-0.5V to +7.0V	Power Supply Operating (V_{CC})	4.0V to 5.5V		
DC Input Voltage (VIN) (Note 2)	-0.5V to +7.0V	Input Voltage (V _{IN})	0V to 5.5V		
DC Input Diode Current		Output Voltage (V _{OUT})	0V to 5.5V		
(I _{IK}) V _{IN} < 0V	–50 mA	Input Rise and Fall Time (t_r, t_f)			
DC Output (I _{OUT}) Sink Current	128 mA	Switch Control Input	0 ns/V to 5 ns		
DC V _{CC} /GND Current		Switch I/O	0 ns/V to DC		
(I _{CC} /I _{GND})	±100 mA	Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$		
Storage Temperature Range		Thermal Resistance (θ_{JA})			
(T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	SOT23-5	300°C/W		
Junction Temperature		SC70-5	425°C/W		
under Bias (T _J)	+150°C	Note 1: The "Absolute Maximum Ratings" are t			
Junction Lead Temperature (T _L)		the safety of the device cannot be guaranteed. operated at these limits. The parametric value			
(Soldering, 10 Seconds)	+260°C	Characteristics tables are not guaranteed at the The "Recommended Operating Conditions" table			
Power Dissipation (PD) @ +85°C		for actual device operation.	e will define the conditions		
SOT23-5	200 mW	Note 2: The input and output negative voltage	0,		
SC70-5	150 mW	the input and output diode current ratings are ob Note 3: Unused inputs must be held HIGH or LO			

DC Electrical Characteristics

Symbol	Parameter	V _{CC}	T _A =	-40°C to +	-85°C	Units	Conditions	
Gymbol	i arameter	(V)	Min Typ		Max	Units	Conditions	
V _{IK}	Clamp Diode Voltage	4.5			-1.2	-V	$I_{IN} = -18 \text{ mA}$	
V _{IH}	HIGH Level Input Voltage	4.5–5.5	2.0			V		
V _{IL}	LOW Level Input Voltage	4.5–5.5			0.8	V		
I _{IN}	Input Leakage Current	5.5			±1.0	μA	$0 \le V_{IN} \le 5.5V$	
I _{OFF}	"OFF" Leakage Current	5.5			±10.0	μA	$0 \le A, B \le V_{CC}$	
R _{ON}	Switch On Resistance	4.5		3	7	Ω	$V_{IN} = 0V, I_{IN} = 64 \text{ mA}$	
	(Note 4)	4.5		3	7	Ω	$V_{IN} = 0V, I_{IN} = 30 \text{ mA}$	
		4.5		6	15	Ω	$V_{IN} = 2.4V, I_{IN} = 15 \text{ mA}$	
		4.0		10	20	Ω	$V_{IN} = 2.4V, I_{IN} = 15 \text{ mA}$	
I _{CC}	Quiescent Supply Current	5.5			10	μA	V _{IN} = V _{CC} or GND	
							I _O = 0	
ΔI_{CC}	Increase in I _{CC} per Input (Note 5)	5.5		0.9	2.5	mA	$V_{IN} = 3.4V$, $I_O = 0$, Control Input only	

Note 4: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

Note 5: Per TTL driven input (V_{IN} = 3.4V, control input only). A and B pins do not contribute to I_{CC}.

AC Electrical Characteristics								
Symbol	Parameter	v _{cc}	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C,$ $C_L = 50 \text{ pF, RU} = \text{RD} = 500\Omega$			Units	Conditions	Fig. No.
		(V)	Min	Typ (Note 6)	Max	-		
t _{PHL} , t _{PLH}	Prop Delay Bus to Bus (Note 7)	4.0-5.5			0.25	ns	V _{IN} = OPEN	Figure 1 Figure 2
t _{PZL} ,	Output Enable Time	4.5–5.5	1.0	2.5	5.0	ns	$V_{IN} = 7V$ for t_{PZL}	Figure 1
t _{PZH}		4.0	1.0		5.5	ns	$V_{IN} = OPEN$ for t_{PZH}	Figure 2
t _{PLZ} ,	Output Disable Time	4.5–5.5	1.0	2.5	5.0	ns	$V_{IN} = 7V$ for t_{PLZ}	Figure 1
t _{PHZ}		4.0	1.0		5.5	ns	$V_{IN} = OPEN$ for t_{PHZ}	Figure 2

Capacitance (Note 8)

Symbol	Parameter	Тур	Max	Units	Conditions
C _{IN}	Control Pin Input Capacitance	2	6	pF	$V_{CC} = 5.0V$
C _{I/O}	Input/Output Capacitance	4.5	10	pF	$V_{CC}, \overline{BE} = 5.0V$

Note 6: All typical values are V_{CC} = 5.0V, $T_A = 25^{\circ}C$.

Note 7: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance). Note 8: $T_A = 25^{\circ}C$, f = 1 MHz.

AC Loading and Waveforms

Input driven by 50Ω source terminated in 50Ω

CL includes load and stray capacitance Input PRR = 1.0 MHz; t_W = 500 ns

www.fairchildsemi.com

7

www.fairchildsemi.com