

Absolute Maximum Ratings(Note 1)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Switch Voltage (V_{S})	-0.5 V to +7.0 V
DC Input Voltage (V1N) (Note 2)	-0.5 V to +7.0 V
DC Input Diode Current	-50 mA
DC Output (lout) Sink Current	128 mA
DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current ($\mathrm{ICC}_{\mathrm{CC}} \mathrm{I}_{\mathrm{GND}}$)	$\pm 100 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature under Bias (T_{J})	$+150^{\circ} \mathrm{C}$
Junction Lead Temperature (T_{L}) (Soldering, 10 Seconds)	$+260^{\circ} \mathrm{C}$
Power Dissipation (P_{D}) @ $+85^{\circ} \mathrm{C}$	
SOT23-5	200 mW
SC70-5	150 mW

Recommended Operating

 Conditions (Note 3)| Power Supply Operating $\left(\mathrm{V}_{\mathrm{CC}}\right)$ | 4.0 V to 5.5 V |
| :--- | ---: |
| Input Voltage $\left(\mathrm{V}_{\text {IN }}\right)$ | 0 V to 5.5 V |
| Output Voltage $\left(\mathrm{V}_{\text {OUT }}\right)$ | 0 V to 5.5 V |
| Input Rise and Fall Time $\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right)$ | |
| Switch Control Input | $0 \mathrm{~ns} / \mathrm{V}$ to 5 ns |
| Switch I/O | $0 \mathrm{~ns} / \mathrm{V}$ to DC |
| Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |
| Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$ | |
| SOT23-5 | $300^{\circ} \mathrm{C} / \mathrm{W}$ |
| SC70-5 | $425^{\circ} \mathrm{C} / \mathrm{W}$ |

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.
Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	4.5			-1.2	-V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{IH}	HIGH Level Input Voltage	4.5-5.5	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	4.5-5.5			0.8	V	
I_{IN}	Input Leakage Current	5.5			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 5.5 \mathrm{~V}$
$\mathrm{I}_{\text {OFF }}$	"OFF" Leakage Current	5.5			± 10.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 4)	4.5		3	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=64 \mathrm{~mA}$
		4.5		3	7	Ω	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=30 \mathrm{~mA}$
		4.5		6	15	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
		4.0		10	20	Ω	$\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=15 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	5.5			10	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\mathrm{O}}=0 \end{aligned}$
$\Delta \mathrm{I}_{\mathrm{CC}}$	Increase in ICC Per Input (Note 5)	5.5		0.9	2.5	mA	$\mathrm{V}_{\mathrm{IN}}=3.4 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=0$, Control Input only
Note 4: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lowe voltages on the two (A or B) pins. Note 5: Per TTL driven input $\left(\mathrm{V}_{\mathbb{I N}}=3.4 \mathrm{~V}\right.$, control input only). A and B pins do not contribute to I_{CC}.							

AC Electrical Characteristics

Symbol	Parameter	$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{RU}=\mathrm{RD}=500 \Omega \end{gathered}$			Units	Conditions	Fig. No.
			Min	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Max			
$\overline{\text { tpHL }}$ tpLH	Prop Delay Bus to Bus (Note 7)	4.0-5.5			0.25	ns	$\mathrm{V}_{\text {IN }}=$ OPEN	Figure 1 Figure 2
${ }_{\text {tPLL }}$	Output Enable Time	4.5-5.5	1.0	2.5	5.0	ns	$\mathrm{V}_{\text {IN }}=7 \mathrm{~V}$ for tpzL	Figure 1
$t_{\text {PzH }}$		4.0	1.0		5.5	ns	$\mathrm{V}_{\text {IN }}=$ OPEN for $\mathrm{t}_{\text {PZH }}$	Figure 2
tpLZ,	Output Disable Time	4.5-5.5	1.0	2.5	5.0	ns	$\mathrm{V}_{\text {IN }}=7 \mathrm{~V}$ for tPLZ	Figure 1
$\mathrm{t}_{\mathrm{PHZ}}$		4.0	1.0		5.5	ns	$\mathrm{V}_{\text {IN }}=$ OPEN for $\mathrm{t}_{\text {PHZ }}$	Figure 2

Capacitance (Note 8)

Symbol	Parameter	Typ	Max	Units	Conditions
C_{IN}	Control Pin Input Capacitance	2	6	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
$\mathrm{C}_{/ / \mathrm{O}}$	Input/Output Capacitance	4.5	10	pF	$\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{BE}}=5.0 \mathrm{~V}$

Note 6: All typical values are $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 7: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).
Note 8: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$.

AC Loading and Waveforms

FIGURE 2. AC Waveforms

Tape and Reel Specification TAPE FORMAT				
Package	Tape	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
M5, P5	Carrier	250	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed
	Leader (Start End)	125 (typ)	Empty	Sealed
M5X, P5X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

TAPE DIMENSIONS inches (millimeters)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

NOTES:
A. CONFORMS TO EIAJ REGISTERED OUTLINE DRAWING SC88A.
B. DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MAA05ARevC
C. DIMENSIONS ARE IN MILLIMETERS.

5-Lead SC70, EIAJ SC-88a, 1.25 mm Wide
 Package Number MAA05A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
