NC7SZ66 TinyLogic™ UHS 1-Bit Low Power Digital Switch

FAIRCHILD

SEMICONDUCTOR TM

NC7SZ66 TinyLogic[™] UHS 1-Bit Low Power Digital Switch

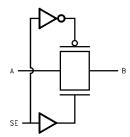
General Description

The NC7SZ66 is a single-bit, ultra high-speed CMOS compatible digital switch. The LOW on resistance of the switch allows inputs to be connected to outputs with minimal propagation delay and without generating additional ground bounce noise. The device is organized as a 1-bit switch with a switch enable (SE) signal. When SE is HIGH, the switch is on and Port A is connected to Port B. When SE is LOW, the switch is open and a high-impedance state exists between the two ports.

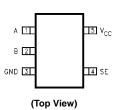
Features

■ Space saving SOT23 or SC70 5-lead package

November 1996


Revised November 1999

- Broad V_{CC} Operating Range 2.3V–5.5V
- \blacksquare 5 Ω switch connection between two ports
- Minimal propagation delay through the switch
- Low I_{CC}
- Zero bounce in flow-through mode
- Control input compatible with CMOS input levels


Ordering Code:

Order	Package	Package	Package Description	Supplied As
Number	Number	Top Mark	Package Description	Supplied AS
NC7SZ66M5	MA05B	7Z66	5-Lead SOT23, JEDEC MO-178, 1.6mm	250 Units on Tape and Reel
NC7SZ66M5X	MA05B	7Z66	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel
NC7SZ66P5	MAA05A	Z66	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	250 Units on Tape and Reel
NC7SZ66P5X	MAA05A	Z66	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description
SE	Switch Enable Input
A	Bus A I/O
В	Bus B I/O

Function Table

SE	B ₀	Function	
L	HIGH-Z State	Disconnect	
Н	A ₀	Connect	

TinyLogic[™] is a trademark of Fairchild Semiconductor Corporation.

www.fairchildsemi.com

NC7SZ66

Absolute Maximum Ratings(Note 1)

	J = ()		J			
Supply Voltage (V _{CC})	-0.5V to +7.0V	Conditions (Note 3)				
DC Switch Voltage (V _S)	-0.5V to V _{CC} +0.5V	Power Supply Operating (V_{CC})	2.3V to 5.5V			
DC Input Voltage (VIN) (Note 2)	-0.5V to +7.0V	Control Input Voltage (VIN)	0V to 5.5V			
DC Input Diode Current		Switch Input Voltage (V _{IN})	0V to V_{CC}			
(I _{IK}) V _{IN} < 0V	–50 mA	Switch Output Voltage (V _{OUT})	0V to V_{CC}			
DC Output (I _{OUT}) Sink Current	128 mA	Input Rise and Fall Time (t_r, t_f)				
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±100 mA	Control Input; $V_{CC} = 2.3V-3.6V$	0 ns/V to 10 ns			
Storage Temperature Range		Control Input; $V_{CC} = 4.5-5.5V$	0 ns/V to 5 ns			
(T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$	Switch I/O	0 ns/V to DC			
Junction Lead Temperature		Operating Temperature (T _A)	$-40^\circ C$ to $+85^\circ C$			
under Bias (T _J)	+150°C	Thermal Resistance (θ_{JA})				
Junction Lead Temperature (T _L)		SOT23-5	300°C/Watt			
(Soldering, 10 Seconds)	+260°C	SC70-5	425°C/Watt			
Power Dissipation (P _D) @ +85°C		Note 1: The "Absolute Maximum Ratings" are t				
SOT23-5	200 mW	the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical				
SC70-5	150 mW					

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused inputs must be held HIGH or LOW. They may not float.

Recommended Operating

DC Electrical Characteristics

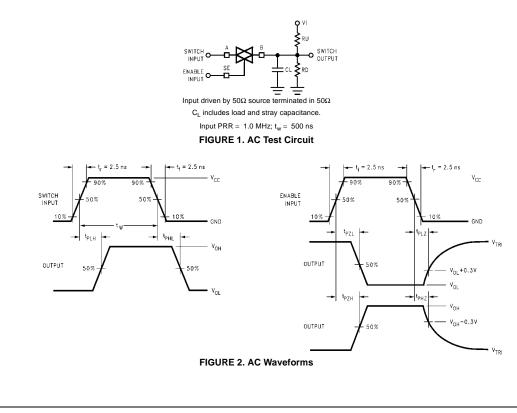
		V _{cc}	V_{CC} $T_{A}= -40^{\circ}C \text{ to } +85^{\circ}C$				
Symbol	Parameter	(V)	Min	Typ (Note 5)	Max	Units	Conditions
VIH	HIGH Level Input Voltage	2.3-5.5	0.7 V _{CC}			V	
VIL	LOW Level Input Voltage	2.3-5.5			0.3 V _{CC}	V	
I _{IN}	Ctrl Input Leakage Current	0-5.5			±1.0	μΑ	$0 \le V_{IN} \le 5.5V$
I _{OFF}	OFF Leakage Current	2.3-5.5			±10.0	μΑ	$0 \le A, B \le V_{CC}$
R _{ON}	Switch On Resistance			3	7	Ω	$V_{IN} = 0V, I_{IN} = 30 \text{ mA}$
	(Note 4)	4.5		5	12	Ω	$V_{IN} = 2.4V, I_{IN} = 15 \text{ mA}$
				7	15	Ω	$V_{IN} = 4.5V, I_{IN} = 30 \text{ mA}$
		3.0		4	9	Ω	$V_{IN} = 0V, I_{IN} = 24 \text{ mA}$
		5.0		10	20	Ω	$V_{IN} = 3V, I_{IN} = 24 \text{ mA}$
		2.3		5	12	Ω	$V_{IN} = 0V, I_{IN} = 8 \text{ mA}$
		2.0		13	30	Ω	$V_{IN} = 2.3V, I_{IN} = 8 \text{ mA}$
Icc	Quiescent Supply Current	5.5			10	μΑ	$V_{IN} = V_{CC} \text{ or GND}$ $I_{OUT} = 0$

Note 4: Measured by the voltage drop between A and B pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (A or B) pins.

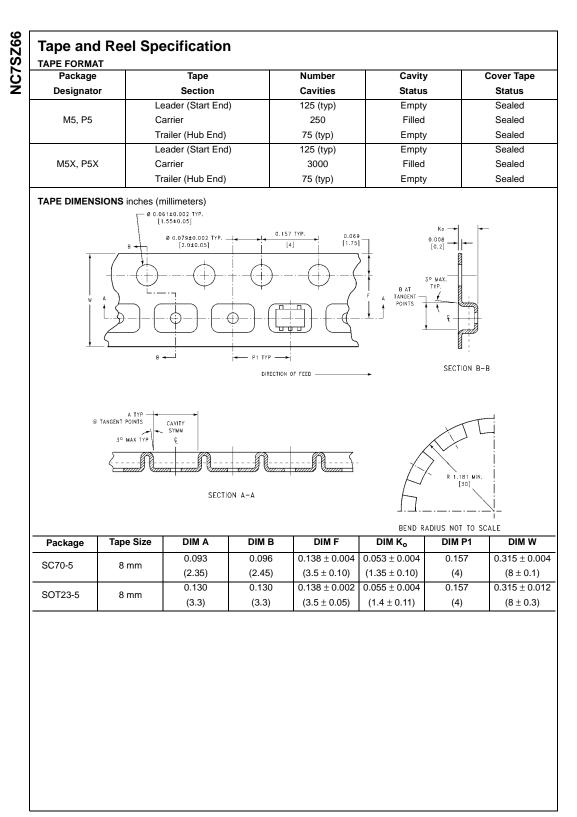
Note 5: All typical values are at the specified V_CC, and T_A = 25°C.

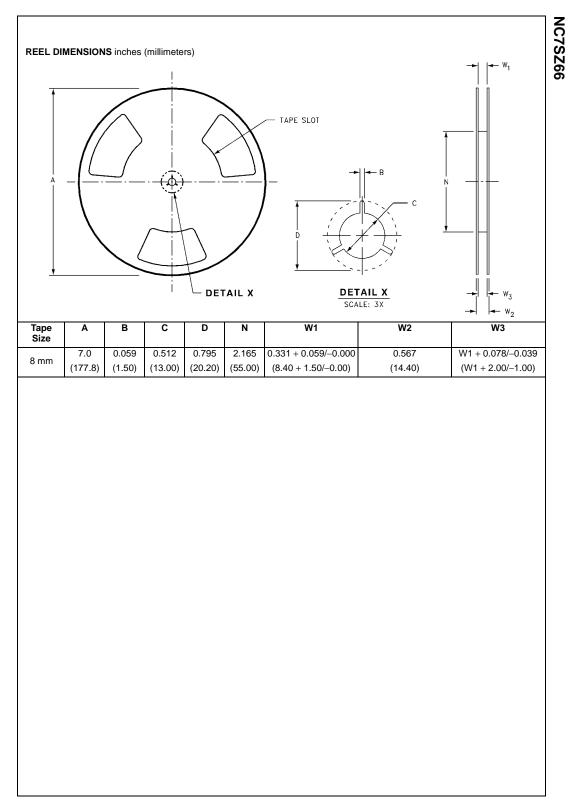
AC Electrical Characteristics

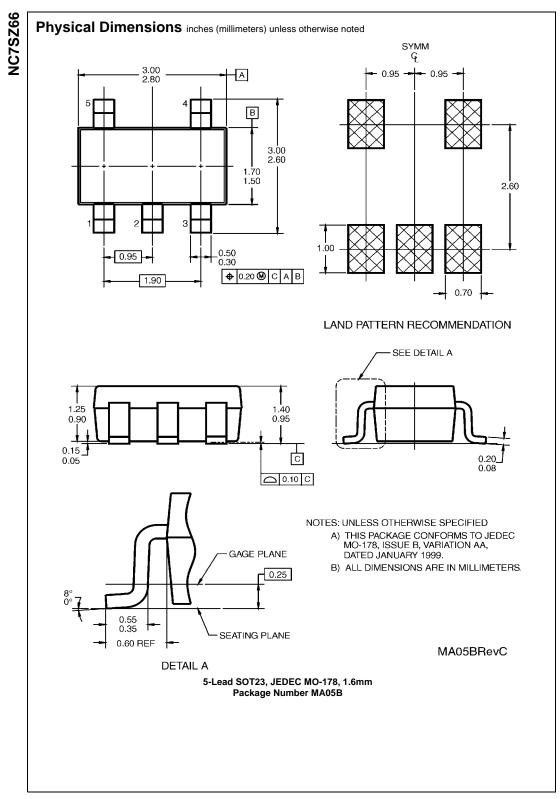
				-40°C to +8				
Symbol	Parameter	V _{cc}	C _L = 50	pF, RU = RD	= 500 Ω	Units	Conditions	Fig. No.
		(V)	Min	Typ (Note 6)	Max			
t _{PHL} , t _{PLH}	Prop Delay Bus to Bus	2.3–2.7			1.2	ns	V _{IN} = OPEN	Figure 1
	(Note 7)	3.0-3.6			0.8	ns		Figure 2
		4.5-5.5			0.3	ns		
t _{PZL} , t _{PZH}	Output Enable Time	2.3–2.7	1.5	3.3	7.0	ns	$V_{IN} = 2 \times V_{CC}$ for t_{PZL}	Figure 1
		3.0-3.6	1.5	2.4	5.5	ns	$V_{IN} = 0V$ for t_{PZH}	Figure 2
		4.5-5.5	1.5	2.0	4.5	ns		
t _{PLZ} , t _{PHZ}	Output Disable Time	2.3–2.7	1.5	5.3	9.0	ns	$V_{IN}= 2 \times V_{CC}$ for t_{PLZ}	Figure 1
		3.0-3.6	1.5	4.0	7.0	ns	$V_{IN} = 0V$ for t_{PHZ}	Figure 2
		4.5-5.5	1.5	2.7	5.0	ns	1	

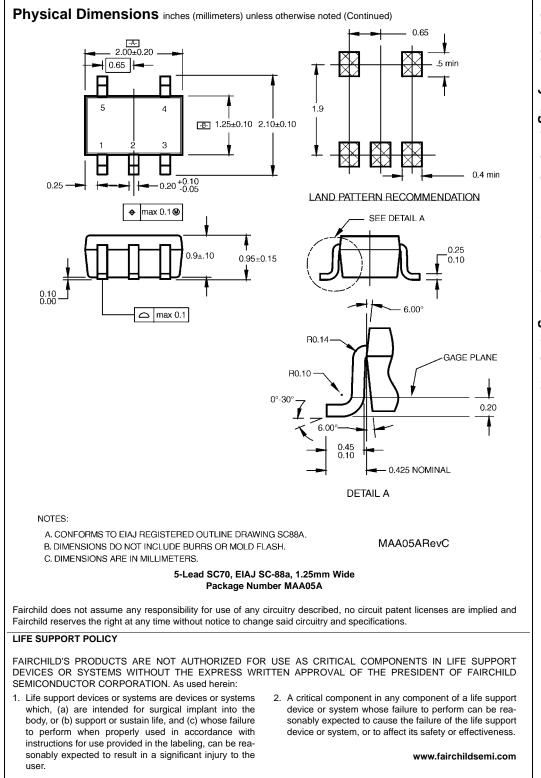

Note 6: All typical values are at the specified V_{CC}, and T_A = 25°C.

Note 7: This parameter is guaranteed by design but is not tested. The switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50 pF load capacitance, when driven by an ideal voltage source (zero output impedance).


Capacitance


C _{IN} Control Pin Input Capacitance 2 pF V _{CC} = 0V C _{I/O} Input/Output Capacitance 6 pF V _{CC} = 5.0V	Symbol	Parameter	Тур	Max	Units	Conditions
C _{I/O} Input/Output Capacitance 6 pF V _{CC} = 5.0V	C _{IN}	Control Pin Input Capacitance	2		pF	$V_{CC} = 0V$
	C _{I/O}	Input/Output Capacitance	6		pF	$V_{CC} = 5.0V$


AC Loading and Waveforms



www.fairchildsemi.com

www.fairchildsemi.com