

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer

March 2008

NC7WZ132

TinyLogic[®] UHS Dual 2-Input NAND Gate with Schmitt Trigger Inputs

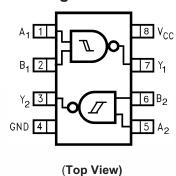
Features

- Space saving US8 surface mount package
- MicroPak™ leadless package
- Ultra High Speed; t_{PD} 3.1ns typ. into 50pF at 5V V_{CC}
- High Output Drive; ±24mA at 3V V_{CC}
- Broad V_{CC} Operating Range; 1.65V to 5.5V
- Matches the performance of LCX when operated at 3.3V V_{CC}
- Power down high impedance inputs/output
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Proprietary noise/EMI reduction circuitry implemented
- Schmitt trigger inputs are tolerant of slow changing input signals

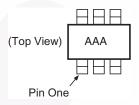
General Description

The NC7WZ132 is a dual 2-Input NAND Gate from Fairchild's Ultra High Speed Series of TinyLogic[®]. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} operating range. The inputs and output are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 7V independent of V_{CC} operating voltage. Schmitt trigger inputs achieve typically 1V hysteresis between the positive-going and negative-going input threshold voltage at 5V V_{CC} .

Ordering Information

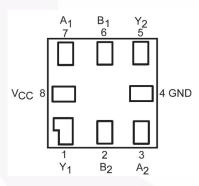

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7WZ132K8X	MAB08A	WZD2	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	3k Units on Tape and Reel
NC7WZ132L8X	MAC08A	T5	8-Lead MicroPak, 1.6 mm Wide	5k Units on Tape and Reel

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.



All packages are lead free per JEDEC: J-STD-020B standard.

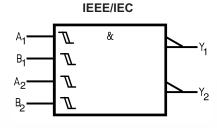
Connection Diagram


Pin One Orientation Diagram

AAA represents Product Code Top Mark – see ordering code

Note: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

Pad Assignments for MicroPak



(Top Thru View)

Pin Description

Pin Names	Description
A _n , B _n	Inputs
Yn	Output

Logic Symbol

Function Table

$$Y = \overline{AB}$$

Inp	uts	Output
Α	В	Y
L	L	Н
L	Н	Н
Н	L	Н
Н	Н	L

H = HIGH Logic Level

L = LOW Logic Level

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	–0.5V to +7V
V _{IN}	DC Input Voltage	-0.5V to +7V
V _{OUT}	DC Output Voltage	–0.5V to +7V
I _{IK}	DC Input Diode Current @ V _{IN} < -0.5V	-50mA
I _{OK}	DC Output Diode Current @ V _{OUT} < -0.5V	-50mA
l _{out}	DC Output Current	±50mA
I _{CC} /I _{GND}	DC V _{CC} /GND Current	±100mA
T _{STG}	Storage Temperature	−65°C to +150°C
T _J	Junction Temperature Under Bias	150°C
T _L	Junction Lead Temperature (Soldering, 10 seconds)	260°C
P _D	Power Dissipation @ +85°C	250mW

Recommended Operating Conditions⁽¹⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

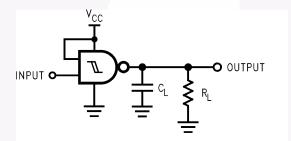
Symbol	Parameter	Rating
V _{CC}	Supply Voltage Operating	1.65V to 5.5V
	Supply Voltage Data Retention	1.5V to 5.5V
V _{IN}	Input Voltage	0V to 5.5V
V _{OUT}	Output Voltage	0V to V _{CC}
T _A	Operating Temperature	-40°C to +85°C
θ_{JA}	Thermal Resistance	250°C/W

Note:

1. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

					T	\ = +25	°C		–40°C 85°C	
Symbol	Parameter	$V_{CC}(V)$	Cor	Min.	Тур.	Max.	Min.	Max.	Units	
V _P	Positive Threshold	1.65			0.6	0.99	1.4	0.6	1.4	V
	Voltage	2.3			1.0	1.39	1.8	1.0	1.8	
					1.3	1.77	2.2	1.3	2.2	
		4.5			1.9	2.49	3.1	1.9	3.1	
		5.5			2.2	2.96	3.6	2.2	3.6	
V _N	Negative Threshold	1.65			0.2	0.53	0.9	0.2	0.9	V
	Voltage	2.3			0.4	0.78	1.15	0.4	1.15	
		3.0			0.6	1.02	1.5	0.6	1.5	
		4.5			1.0	1.48	2.0	1.0	2.0	
		5.5			1.2	1.76	2.3	1.2	2.3	
V _H	Hysteresis Voltage	1.65			0.15	0.46	0.9	0.15	0.9	V
		2.3			0.25	0.61	1.1	0.25	1.1	
	7	3.0			0.4	0.75	1.2	0.4	1.2	
	7	4.5			0.6	1.01	1.5	0.6	1.5	
		5.5			0.7	1.20	1.7	0.7	1.7	
V _{OH}	HIGH Level Output	1.65	$V_{IN} = V_{IL}$	$I_{OH} = -100 \mu A$	1.55	1.65		1.55		V
	Voltage	2.3			2.2	2.3		2.2		
	3.0			2.9	3.0		2.9			
		4.5			4.4	4.5		4.4		
		1.65		$I_{OH} = -4mA$	1.29	1.52		1.29		
		2.3		$I_{OH} = -8mA$	1.9	2.15		1.9		
		3.0		$I_{OH} = -16mA$	2.4	2.80		2.4		
		3.0		$I_{OH} = -24mA$	2.3	2.68		2.3		
		4.5		$I_{OH} = -32mA$	3.8	4.20		3.8		
V _{OL}	LOW Level Output	1.65	$V_{IN} = V_{IH}$	$I_{OL} = 100 \mu A$		0.0	0.10		0.10	V
	Voltage	2.3				0.0	0.10		0.10	
		3.0				0.0	0.10		0.10	
		4.5				0.0	0.10		0.10	
	· ·	1.65		$I_{OL} = 4mA$		0.08	0.24		0.24	
		2.3		$I_{OL} = 8mA$		0.10	0.3		0.3	
		3.0		I _{OL} = 16mA		0.15	0.4		0.4	
		3.0		I _{OL} = 24mA		0.22	0.55		0.55	
		4.5		I _{OL} = 32mA		0.22	0.55		0.55	
I _{IN}	Input Leakage Current	0 to 5.5	$V_{IN} = 5.5V$, GND			±0.1		±1	μA
I _{OFF}	Power Off Leakage Current	0.0	V _{IN} or V _{OL}	_{JT} = 5.5V			1		10	μA
I _{CC}	Quiescent Supply Current	1.65 to 5.5	V _{IN} = 5.5V	, GND			1		10	μA


AC Electrical Characteristics

				T,	_{\(\begin{align*} & = +25\end{align*}}	°C	T _A = -	-40°C 85°C		Figure
Symbol	Parameter	V _{CC} (V)	Conditions	Min.	Тур.	Max.	Min.	Max.	Units	Number
t _{PLH} , t _{PHL}	Propagation Delay	1.8 ± 0.15	$C_L = 15 pF,$	3.0	7.1	13.0	3.0	13.5	ns	Figure 1
		2.5 ± 0.2	$R_L = 1M\Omega$	2.0	4.5	7.5	2.0	8.0		Figure 3
		3.3 ± 0.3		1.2	3.4	5.0	1.2	5.5		
		5.0 ± 0.5		0.8	2.6	3.8	0.8	4.2		
t _{PLH} , t _{PHL}	Propagation Delay	3.3 ± 0.3	$C_L = 50pF,$	1.8	4.0	5.8	1.8	6.3	ns	Figure 1
		5.0 ± 0.5	$R_L = 500\Omega$	1.2	3.1	4.5	1.2	4.9		Figure 3
C _{IN}	Input Capacitance	0			2.5				pF	
C _{PD} Power Dissipation		3.3	(2)		15				pF	Figure 2
	Capacitance				18					

Note:

2. C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC}\text{static})$.

AC Loading and Waveforms

 $\rm C_L$ includes load and stray capacitance Input PRR = 1.0 MHz; $\rm t_w = 500 ns$

Figure 1. AC Test Circuit

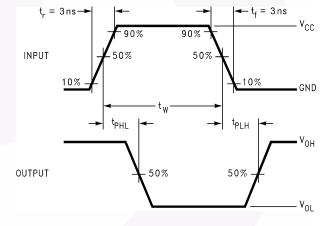
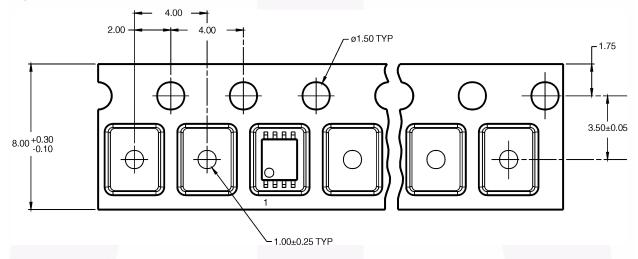


Figure 3. AC Waveforms

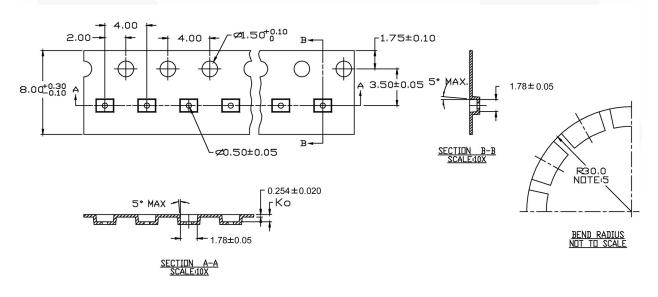
Input = AC Waveform; $t_r = t_f = 1.8$ ns; PRR = 10 MHz;Duty Cycle = 50%


Figure 2. I_{CCD} Test Circuit

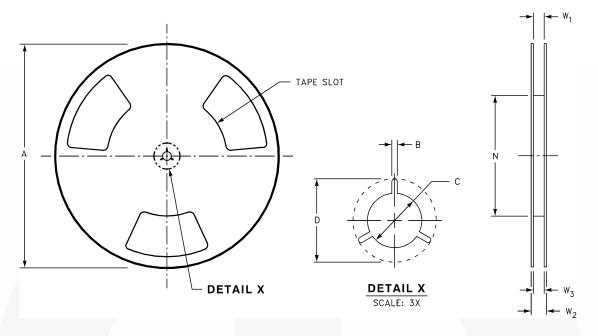
Tape and Reel Specifications

Tape Format for US8

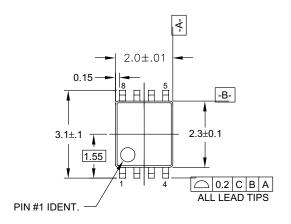
Package Designator	Tape Section	Number of Cavities	Cavity Status	Cover Tape Status
K8X	Leader (Start End)	125 (typ.)	Empty	Sealed
	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ.)	Empty	Sealed

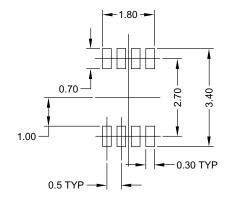

Tape Dimensions inches (millimeters)

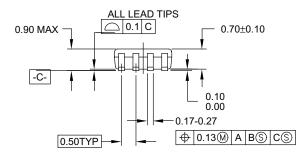
Tape Format for MicroPak

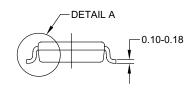

Package Designator	Tape Section	Number of Cavities	Cavity Status	Cover Tape Status
L8X	Leader (Start End)	125 (typ.)	Empty	Sealed
	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ.)	Empty	Sealed

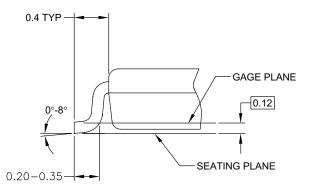
Tape Dimensions inches (millimeters)


Tape and Reel Specifications (Continued)


Reel Dimensions inches (millimeters)


Tape Size	Α	В	С	D	N	W1	W2	W3
8mm	7.0	0.059	0.512	0.795	2.165	0.331 +0.059/-0.000	0.567	W1 +0.078/-0.039
	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	(8.40 +1.50/-0.00)	(14.40)	(W1 +2.00/-1.00)


Physical Dimensions



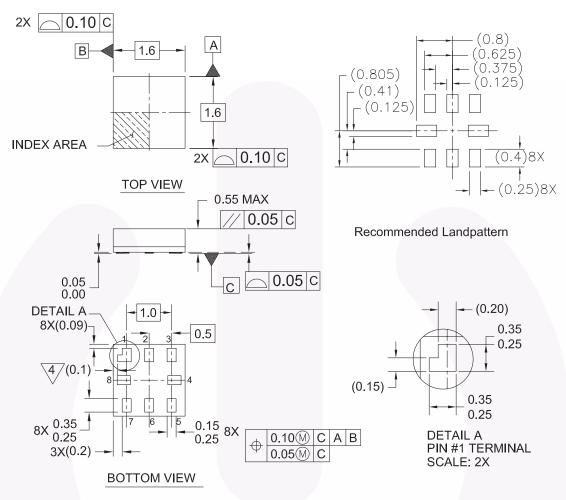
LAND PATTERN RECOMMENDATION

NOTES:

- A. CONFORMS TO JEDEC REGISTRATION MO-187
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

DETAIL A

MAB08AREVC


Figure 4. 8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/packaging/

Physical Dimensions (Continued)

Notes:

- 1. PACKAGE CONFORMS TO JEDEC MO-255 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y.14M-1994
- 4/PIN 1 FLAG, END OF PACKAGE OFFSET
- 5. DRAWING FILE NAME: MKT-MAC08AREV4

MAC08AREV4

Figure 5. 8-Lead MicroPak, 1.6 mm Wide

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ CorePLUS™ $CROSSVOLT^{\text{TM}}$ **CTL™**

Current Transfer Logic™ EcoSPARK® EZSWITCH™ *

Fairchild[®] Fairchild Semiconductor® FACT Quiet Series™

FACT[®] $\mathsf{FAST}^{\mathbb{R}}$ FastvCore™ FlashWriter® 3 FPS™ $\mathsf{FRFET}^{\scriptscriptstyle{\textcircled{\tiny{\$}}}}$

Global Power Resource^{sм}

Green FPS™

Green FPS™e-Series™

GTO™ i-Lo™ IntelliMAX™

ISOPLANAR™ MegaBuck™ MICROCOUPLER™

MicroFET™

MicroPak™ MillerDrive™ Motion-SPM™ OPTOLOGIC®

OPTOPLANAR®

PDP-SPM™ Power220® POWEREDGE® Power-SPM™ PowerTrench[®]

Programmable Active Droop™

QS™

Quiet Series™ RapidConfigure™ SMART START™ SPM[®] STEALTH™ SuperFET™ SuperSOT™3

QT Optoelectronics™ SuperSOT™6 SuperSOT™8

SupreMOS™ SyncFET™ SYSTEM ® GENERAL

The Power Franchise®

խwer franchis TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ μSerDes™ UHC®

Ultra FRFET™ UniFET™ **VCX™**

* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild Semiconductor. The datasheet is printed for reference information only.

Rev. I33

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative