Gate Driver for Desktop Power Systems

The NCP5358 is a high performance two channel gate driver. It combines two single NCP5359 gate drivers together and provides an optimized solution for multi-phase application. Each channel gate driver has both high-side and low side power MOSFETs in a synchronous buck converter. Also, it can drive up to 3 nF load with a 25 ns propagation delay and 20 ns transition time.

An adaptive non-overlap and power saving operation circuit has built in. It can provide a low switching loss and high efficiency solution in notebook and desktop systems. Thus, this controller has three protection functions, under voltage lockout (UVLO), over voltage protection (OVP) and thermal shutdown.

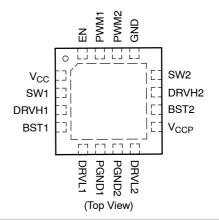
The NCP5358 is available in 4x4 mm QFN16 package.

Features

- Faster Rise and Fall Times
- Thermal Shutdown Protection
- Adaptive-Non-Overlap Circuit
- Floating Top Driver Accommodates Boost voltage of up to 30 V
- Output Disable Control Turn Off Both MOSFETs
- Complies with VR11.1 Specifications
- Under-Voltage Lock Out
- Power Saving Operation under Light Load Condition
- Thermally Enhanced Package Available
- These are Pb–Free Devices

Typical Applications

• Power Solutions for Desktop and Notebook system.



ON Semiconductor®

http://onsemi.com

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
NCP5358MNTXG	QFN–16 (Pb–Free)	4000/Tape & Reel

+ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

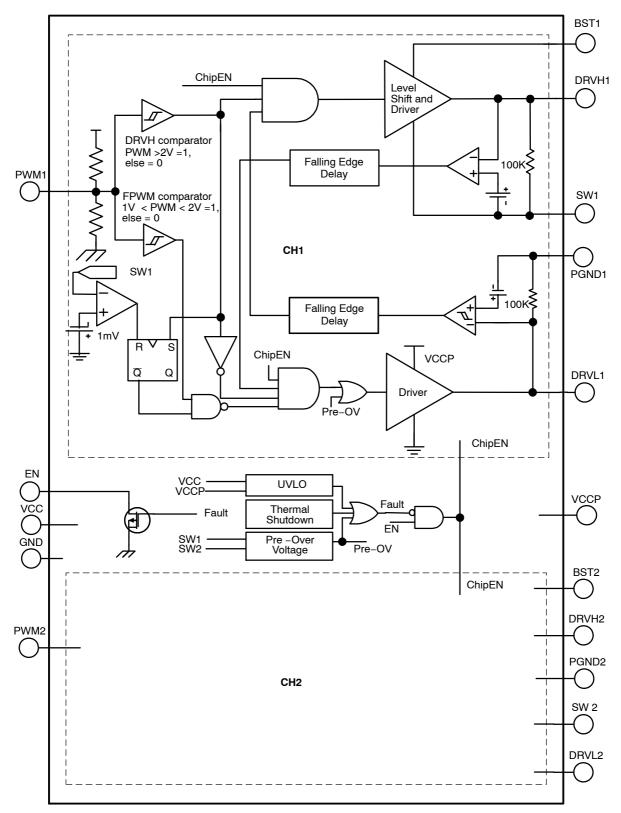
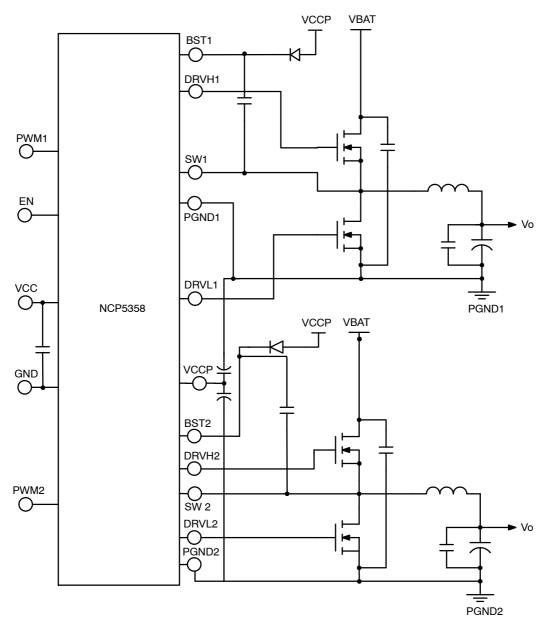



Figure 1. Internal Block Diagram and Typical Application

PIN DESCRIPTION

Pin NO.	Symbol	Descriptions
1	V _{CC}	Analog logic input power pin
2	SW 1	PWM 1 Switch Node pin
3	DRVH 1	PWM 1 High side gate drive output
4	BST1	Upper MOSFET floating bootstrap supply pin
5	DRVL 1	PWM 1 Low side gate drive output
6	PGND 1	PWM 1 Ground pin
7	PGND 2	PWM 2 Ground pin
8	DRVL 2	PWM 2 Low side gate drive output
9	V _{CCP}	Connect to input power supply 10 V to 13.2 V
10	BST 2	Upper MOSFET floating bootstrap supply pin
11	DRVH 2	PWM 2 High side gate drive output
12	SW 2	PWM 2 Switch Node pin
13	GND	Analog logic ground pin
14	PWM 2	PWM2 input pin When PWM voltage is higher than 2 V, DRVH will set to 1 and DRVL set to 0 When PWM voltage is lower than 1 V, DRVL set to 1 and DRVH set to 0 When 1 V < PWM < 2V and SW < 0, DRVL will set to 1 When 1 V < PWM < 2V and SW > 0, DRVL will set to 0
15	PWM 1	PWM1 input pin When PWM voltage is higher than 2 V, DRVH will set to 1 and DRVL set to 0 When PWM voltage is lower than 1 V, DRVL set to 1 and DRVH set to 0 When 1 V < PWM < 2 V and SW < 0, DRVL will set to 1 When 1 V < PWM < 2 V and SW > 0, DRVL will set to 0
16	EN	Both Channel Enable pin When OVP, TSD or UVLO has happened, the gate driver will pull the pin to low

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Thermal Characteristics Plastic Package, Thermal Resistance, Junction to Air (1 in ² of 2 oz copper)	R _{θJA}	110	°C/W
Operating Junction Temperature Range	Т _Ј	0 to + 150	°C
Operating Ambient Temperature Range	Τ _Α	0 to +85	°C
Storage Temperature Range	T _{stg}	–55 to +150	°C
Moisture Sensitivity Level	MSL	1	-

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Pin Symbol	Pin Name	V _{MAX}	V _{MIN}
V _{CC}	Main Supply Voltage input	15 V	–0.3 V
V _{CCP}	Main Supply Voltage input	15 V	–0.3 V
BST1, BST2	Bootstrap Supply voltage	30 V wrt / GND 35 V ≤ 50 ns wrt / GND 15 wrt / SW	-0.3 V
SW1,SW2	Switching Node (Bootstrap Supply Return)	30 V	−1 VDC −10 V (200 ns)
DRVH1, DRVH2	High Side Driver output	BST + 0.3 V 35 V ≤ 50 ns wrt / GND 15 wrt / SW	–0.3 V –2 V (200 ns)
DRVL1, DRVL2	Low Side Driver output	Vcc + 0.3 V	–0.3 V −2 V (200 ns)
PWM1, PWM2	DRVH and DRVL Control Input	6 V	–0.3 V
EN	Enable Pin	6 V	-0.3 V
GND	Ground	0	0 V

Latchup Current Maximum Rating: 100 mA per JEDEC standard: JESD78.
 Moisture Sensitivity Level (MSL): 1&3 per IPC/JEDEC standard: J-STD-020A.

3. The maximum package power dissipation limit must not be exceeded.

$$PD = \frac{TJ(max) - TA}{R\theta JA}$$

NOTE: This device is ESD sensitive. Use standard ESD precautions when handling.

ELECTRICAL CHARACTERISTICS (V_{CC} = 12 V, T_A = 0°C to 85°C, V_{EN} = 5 V, unless other noted.)

Characteristics	Symbol	Test Conditions	Min	Тур	Max	Units
SUPPLY VOLTAGE						
V _{CC} Operating Voltage	V _{CC}		10	-	13.2	V
Power ON Reset Threshold	V _{POR}		_	3.2	_	V

SUPPLY CURRENT

V _{CCP} Quiescent Supply Current in Normal Operation	IVCCP_NORM	$\label{eq:stars} \begin{array}{l} EN = 5 \ V, \ PWM1 = PWM2 = OSC, \\ F_{SW} = 100 \ K, \ duty \ cycle = 50\%. \\ C_{LOAD} = 0 \ p \end{array}$		1.5	4	mA
V _{CC} Quiescent Supply Current in Normal Operation	IVCC_NORM	$\label{eq:starses} \begin{array}{l} EN = 5 \text{ V}, \text{PWM1} = \text{PWM2} = \text{OSC}, \\ F_{\text{SW}} = 100 \text{ K}, \text{ duty cycle} = 50\%. \\ C_{\text{LOAD}} = 0 \text{ p} \end{array}$		1.5	2.5	mA
V _{CCP} Standby Current	I _{VCCP_SBC}	EN = GND; No switching	-	0.1	0.5	mA
V _{CC} Standby Current	I _{VCC_SBC}	EN = GND; No switching	-	0.9	1.5	mA
BST1 Quiescent Supply Current in Normal	I _{BST1_normal}	PWM1 = +5 V		1.0	1.5	mA
Operation	I _{BST1_normal}	PWM1 = GND		1.0	1.5	
BST2 Quiescent Supply Current in Normal	I _{BST2_normal}	PWM2 = +5 V		1.0	1.5	mA
Operation	I _{BST2_normal}	PWM2 = GND		1.0	1.5	
BST1 Standby Current	I _{BST1_SD}	PWM1 = +5 V		0.25		mA
	I _{BST1_SD}	PWM1 = GND		0.25		
BST2 Standby Current	I _{BST2_SD}	PWM2 = +5 V		0.25		mA
	I _{BST2_SD}	PWM2 = GND		0.25		

UNDER VOLTAGE LOCKOUT

V _{CCP} Start Threshold	VCCP _{TH}		8.2	8.7	9.5	V
V _{CCP} UVLO Hysteresis	VCCP _{HYS}			1.0		V
V _{CC} Start Threshold	VCC _{TH}		8.2	8.7	9.5	V
V _{CC} UVLO Hysteresis	VCC _{HYS}			1.0		V
Output Overvoltage Trip Threshold at channel 1 Startup	OVP1_SU	Power Startup time, V _{CC} > 9 V. (Without trimming)	1.8		2.0	V
Output Overvoltage Trip Threshold at channel 2 Startup	OVP2_SU	Power Startup time, V _{CC} > 9 V. (Without trimming)	1.8		2.0	V

EN INPUT

Input Voltage High	V _{EN_HI}		2.0			V
Input Voltage Low	V _{EN_LOW}				1.0	V
Hysteresis (Note 6)	V _{EN_HYS}			500		mV
Enable Pin Sink Current	I _{EN_SINK}	V _{CC} = 5.5 V	5.0			mA
Propagation Delay Time (Note 6)	TpdhEN			20	60	ns
	TpdIEN			20	60	ns

PWM INPUT

PWM Input Self Bias Voltage	CH1	V _{PWM1}	1.4	1.5	1.6	V
	CH2	V _{PWM2}				
DRVH Comparator Rise Threshold	CH1	VTH_DRVH1	2.2			V
	CH2	VTH_DRVH2				
DRVL Comparator Rise Threshold	CH1	VTH_DRVL1			0.8	V
	CH2	VTH_DRVL2				

ELECTRICAL CHARACTERISTICS (V_{CC} = 12 V, T_A = 0°C to 85°C, V_{EN} = 5 V, unless other noted.)

Characteristics		Symbol	Test Conditions	Min	Тур	Max	Units
PWM INPUT							
Input Current	CH1	I _{PWM1}	PWM1 = 0 V, EN = GND		30		μA
	CH2	I _{PWM2}	PWM2 = 0 V, EN = GND				

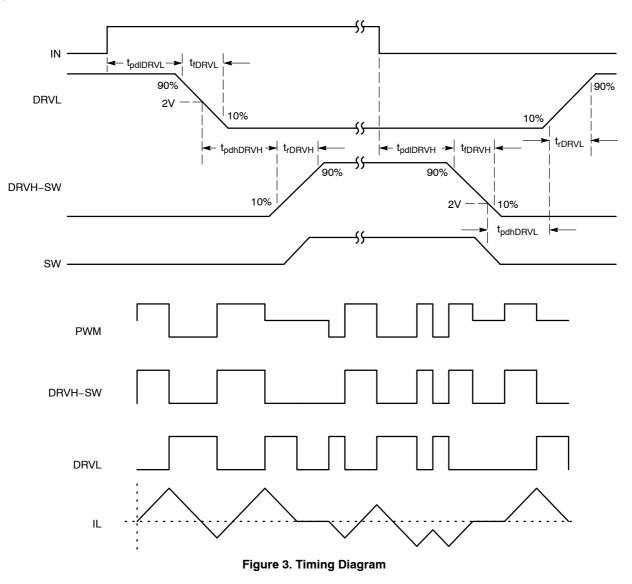
HIGH SIDE DRIVER

Output Resistance, Sourcing	CH1	R _{H_TG1}	$V_{BST1} - V_{SW1} = 12 V$		2.0	3.5	Ohms
	CH2	R _{H_TG2}	$V_{BST2} - V_{SW2} = 12 V$				
Output Resistance, Sinking	CH1	R _{H_TG1}	V _{BST1} – V _{SW1} = 12 V		1.0	2.5	Ohms
	CH2	R _{H_TG2}	V _{BST2} – V _{SW2} = 12 V				
Transition Time (Note 6)	CH1	Tr _{DRVH1}	C_{LOAD} = 3 nF, $V_{BST1} - V_{SW1}$ = 12 V		16	25	ns
		Tf _{DRVH1}	C_{LOAD} = 3 nF, $V_{BST1} - V_{SW1}$ = 12 V		11	15	1
	CH2	Tr _{DRVH2}	C_{LOAD} = 3 nF, $V_{BST2} - V_{SW2}$ = 12 V		16	25	
		Tf _{DRVH2}	C_{LOAD} = 3 nF, $V_{BST2} - V_{SW2}$ = 12 V		11	15	
Propagation Delay (Notes 5 & 6)	CH1	Tpdh _{DRVH1}	Driving High, $C_{LOAD} = 3 \text{ nF}$	10		40	ns
		Tpdl _{DRVH1}	Driving Low, C _{LOAD} = 3 nF	10		40	1
	CH2	Tpdh _{DRVH2}	Driving High, $C_{LOAD} = 3 \text{ nF}$	10		30]
		Tpdl _{DRVH2}	Driving Low, $C_{LOAD} = 3 \text{ nF}$	10		30]

LOW SIDE DRIVER

Output Resistance, Sourcing	CH1	R _{H_BG1}	SW = GND		2.0	3.5	Ohms
	CH2	$R_{H_{BG2}}$	SW = GND				
Output Resistance, Sinking	CH1	$R_{L_{BG1}}$	SW = V _{CC}		1.0	2.5	Ohms
	CH2	$R_{L_{BG2}}$	SW = V _{CC}				
Transition Time (Note 6)	CH1	TrDRVL1	C _{LOAD} = 3 nF		16	25	ns
		TfDRVL1	C _{LOAD} = 3 nF		11	15	
	CH2	TrDRVL2	C _{LOAD} = 3 nF		16	25	
		TfDRVL2	C _{LOAD} = 3 nF		11	15	
Propagation Delay (Notes 5 & 6)	CH1	Tpdh _{DRVL1}	Driving High, C _{LOAD} = 3 nF	10		40	ns
		Tpdl _{DRVL1}	Driving Low, C _{LOAD} = 3 nF	10		40	
	CH2	Tpdh _{DRVL2}	Driving High, C _{LOAD} = 3 nF	10		30	
		Tpdl _{DRVL2}	Driving Low, C _{LOAD} = 3 nF	10		30	
Negative Current Detector Threshold	CH1	V _{NCDT1}	(Note 4)		-1.0		mV
	CH2	V _{NCDT2}	(Note 4)	7			

THERMAL SHUTDOWN


Thermal Shutdown	Tsd	(Note 6)	150	170	-	°C
Thermal Shutdown Hysteresis	Tsdhys	(Note 6)		20		°C

Design guaranteed
 For propagation delays, "tpdh" refers to the specified signal going high "tpdl" refers to it going low.
 Guaranteed by design; not tested in production

Table 1. Decoder Truth Table:

PWM 1 or PWM 2 Input	ZCD	DRVL	DRVH
Greater than 2.0 V	Х	Low	High
Greater than 1.0 V, but less than 2.0 V High (current through MOSFET is greater than 0)		High	Low
Greater than 1.0 V, but less than 2.0 V	Low (current through MOSFET is less than 0)	Low	Low
Less than 1.0 V	Х	High	Low

Application Information

The NCP5358 gate driver is a dual phase MOSFET driver, each phase designed for driving two N-channel MOSFETs in a synchronous buck converter topology. This driver is compatible with the Signal channel NCP5359 gate drive. This gate drives has a Bi-direction fault detection and multi-level PWM input feature. When the gate driver works with ON's NCP539X controller, it can provide a difference output logic status through multi-level PWM input. For this new feature, higher efficiency can be provided. For the bi-direction fault detection function, it is used to provide a driver state information to other gate drivers and controller in a multi-phase buck converter. e.g over voltage protection (OVP) function at startup, thermal shutdown and under voltage lockout (UVLO). This feature can provide an additional protection function for the multi-phase system when the fault condition occurs in one channel. With this additional feature, converter overall system will be more reliable and safe.

Enable Pin

The bi-direction enable pin is connected with an open drain MOSFET. This pin is controlled by internal or external signal. There are three conditions will be triggered:

- 1. The voltage at SW1 or SW2 pin is higher than preset voltage at power start up.
- 2. The controller hits the UVLO at V_{CC} pin or V_{CCP} pin.
- 3. The controller hits the thermal shutdown.

When the internal fault has been detected, EN pin will be pull low. In this case, both channel drive output DRVH and DRVL will be forced low, until the fault mode remove then restart automatic.

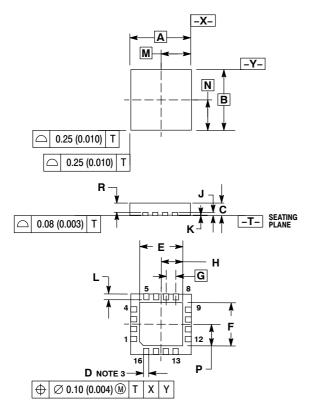
Under Voltage Lockout

The DRVH1, DRVH2 and DRVL1, DRVL2 are held low until V_{CC} or V_{CCP} reaches 9 V during startup. The PWM signals will control the gate status when V_{CC} threshold is exceeded. If V_{CC} decreases to 3.2 V below the threshold, the output gate will be forced low until input voltage V_{CC} rises above the startup threshold.

Power ON Reset

Power on reset feature is used to protect a gate driver avoid abnormal status driving the start up condition. When the initial soft start voltage V_{CC} is higher than 3.2 V, the gate driver will monitor the switching node SW pin. If SW1 or SW2 pin high than 1.9 V, bottom gate will be force to high for discharge the output capacitor. The fault mode will be latch and EN pin will force both channel to be low, unless the driver is recycle. When input voltage is higher than 9 V, the gate driver will normal operation, top gate driver DRVH and bottom gate driver will follow the PWM signal decode to a status.

Adaptive Non-overlap


The non-overlap dead time control is used to avoid the shoot through damage the power MOSFETs. When the PWM signal pull high, DRVL will go low after a propagation delay, the controller will monitors the switching node (SW) pin voltage and the gate voltage of the MOSFET to know the status of the MOSFET. When the low side MOSFET status is off an internal timer will delay turn on of the high-side MOSFET. When the PWM pull low, gate DRVH will go low after the propagation delay (tpdDRVH). The time to turn off the high side MOSFET is depending on the total gate charge of the high-side MOSFET. A timer will be triggered once the high side MOSFET is turn off to delay the turn on the low-side MOSFET.

Layout Guidelines

Layout is very important thing for design a DC–DC converter. Bootstrap capacitor and V_{CC} capacitor are most critical items, it should be placed as close as to the driver IC. Another item is using a GND plane. Ground plane can provide a good return path for gate drives for reducing the ground noise. Therefore GND pin should be directly connected to the ground plane and close to the low–side MOSFET source pin in every channel. Also, the gate drive trace should be considered. The gate drives has a high di/dt when switching, therefore a minimized gate drives trace can reduce the di/dv, raise and fall time for reduce the switching loss.

PACKAGE DIMENSIONS

16 PIN QFN CASE 485D-01 ISSUE O

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS.

- CONTROLLING DIMENSION: MILLIMETERS.
 DIMENSION D APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM
- FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD
- AS WELL AS THE TERMINALS.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	4.00 BSC		0.157 BSC		
В	4.00 BSC		0.157 BSC		
С	0.80	1.00	0.031	0.039	
D	0.23	0.35	0.009	0.014	
Е	2.75	2.85	0.108	0.112	
F	2.75	2.85	0.108	0.112	
G	0.65 BSC		0.026 BSC		
Н	1.38	1.43	0.054	0.056	
J	0.20 REF		0.008 REF		
К	0.00	0.05	0.000	0.002	
L	0.35	0.45	0.014	0.018	
М	2.00 BSC		0.079 BSC		
Ν	2.00 BSC		0.079 BSC		
Ρ	1.38	1.43	0.054	0.056	
R	0.60	0.80	0.024	0.031	

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use patent solut. Cwas negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative