CAN Transceiver NCV7349 Specification Addendum

ON Semiconductor®

www.onsemi.com

TECHNICAL REPORT

Introduction and Document Scope

This document deals with impact of extended supply range of 4.5 V to 5.5 V (VCC pin) to parametric operation of NCV7349 and also impact to specific Velio system test.

Datasheet Parameters in Extended Range

NCV7349 in datasheet clearly specify power supply conditions for parametric operation in the range from VCC = 4.75 V to 5.25 V. Table 1 in NCV7349 datasheet [1] notes that the functional range of the chip is extended to 4.5 V to 5.5 V.

Absolute Maximum Ratings

The chip absolute maximum ratings as defined in NCV7349 datasheet [1] in Table 4 are not affected by extended supply range conditions from VCC of 4.5 V to 5.5 V.

Thermal Characteristics

The chip thermal characteristics as defined in NCV7349 datasheet [1] in Table 5 are not affected by extended supply range conditions from VCC of 4.5 V to 5.5 V.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	Impact of extended supply range of 4.5 V to 5.5 V on V _{CC} pin
SUPPLY (Pii	n V _{CC})						
I _{CC}	Supply current	Dominant; $V_{TxD} = 0 V$ Recessive; $V_{TxD} = V_{IO}$	-	48 6	79 10.5	mA mA	Max value 5% impacted
I _{CCS}	Supply current in standby mode	$T_J \le 100^{\circ}C$, (Note 1)	-	10	15.75	μΑ	Max value 5% impacted
VUVDVCC	Undervoltage de- tection voltage on V _{CC} pin		2	3	4	V	NO IMPACT
SUPPLY (pir	י V _{IO}) on NCV7349–3 י	Version Only					
V _{IO}	Supply voltage on pin V _{IO}		2.8	-	5.5	V	NO IMPACT
I _{IOS}	Supply current on pin V _{IO} in standby mode	Standby mode	-	1	-	μΑ	NO IMPACT
I _{IONM}	Supply current on pin V _{IO} in normal mode	Dominant; $V_{TxD} = 0 V$ Recessive; $V_{TxD} = V_{IO}$	-	_	1 0.2	mA mA	NO IMPACT
V _{UVDVIO}	Undervoltage de- tection voltage on V _{IO} pin		1.3	Ι	2.7	V	NO IMPACT
TRANSMITT	ER DATA INPUT (Pin	TxD)					
V _{IH}	High-level input voltage	Output recessive	2.0	-	V _{IO}	V	NO IMPACT

ELECTRICAL CHARACTERISTICS V_{CC} = 4.75 V to 5.25 V; V_{IO} = 2.8 V to 5.5 V (NCV7349–3 only); T_{J} = -40 to +150°C; R_{LT} = 60 Ω

1. Values based on design and characterization, not tested in production

 The performance is dominantly defined by the same IP like used in NCV7351 and NCV7342 where supply range is guaranteed and characterized from 4.5 V to 5.5 V

ELECTRICAL CHARACTERISTICS V_{CC} = 4.75 V to 5.25 V; V_{IO} = 2.8 V to 5.5 V (NCV7349–3 only); T_J = –40 to +150°C; R_{LT} = 60 Ω unless specified otherwise. On chip versions without V_{IO} pin, reference voltage for all digital inputs and outputs is V_{CC} instead of V_{IO} .

Symbol Parameter		Conditions	Min	Тур	Max	Unit	Impact of extended supply range of 4.5 V to 5.5 V on V _{CC} pin
TRANSMITT	ER DATA INPUT (Pin T	xD)					•
V _{IL}	Output dominant	-0.3	-	+0.8	V	NO IMPACT	
Ι _{ΙΗ}	High–level input current	$V_{TxD} = V_{IO}$	-5	0	+5	μΑ	NO IMPACT
Ι _{ΙL}	Low-level input current	V _{TxD} = 0 V	-75	-200	-350	μΑ	NO IMPACT
Ci	Input capacitance	(Note 1)	-	5	10	pF	NO IMPACT
TRANSMITT	ER MODE SELECT (Pi	n STB)					
V _{IH}	High–level input voltage	Standby mode	2.0	-	V _{IO}	V	NO IMPACT
V _{IL}	Low-level input voltage	Normal mode	-0.3	I	+0.8	V	NO IMPACT
Ι _{ΙΗ}	High–level input current	V _{STB} = V _{IO}	-5	0	+5	μΑ	NO IMPACT
Ι _{ΙL}	Low-level input cur- rent, NCV7349-0	V _{STB} = 0 V	-10	-4	-1	μΑ	NO IMPACT
I _{IL3}	Low-level input cur- rent, NCV7349-3	V _{STB} = 0 V	-40	20	-4	μΑ	NO IMPACT
Ci	Input capacitance	(Note 1)	-	5	10	pF	NO IMPACT
RECEIVER I	DATA OUTPUT (Pin Rx	D)	-		-	-	
011 3 4 4 4 1		Normal mode V _{RxD} = V _{IO} - 0.4 V	-0.1	-0.4	-1	mA	NO IMPACT
I _{OL}	Low-level output current	V _{RxD} = 0.4 V	1.6	6	12	mA	NO IMPACT
V _{OH}	V_{OH} High-level output voltageWeaker RxD pin in Standby mode is on NCV7349-0 ver- sion only		V _{IO} – 1.1	V _{IO} – 0.7	V _{IO} - 0.4	V	NO IMPACT
BUS LINES	(Pins CANH and CANL	.)					
V _{o(reces)} (norm)	Recessive bus voltage on pins CANH and CANL	V _{TxD} = V _{IO} ; no load; normal mode	2.0	2.5	3.0	V	NO IMPACT (Note 2)
V _{o(reces)} (stby)	Recessive bus voltage on pins CANH and CANL	V _{TxD} = V _{IO} ; no load; standby mode	-100	0	100	mV	NO IMPACT (Note 2)
I _{o(reces)} (CANH)	Recessive output current at pin CANH	–35 V < V _{CANH} < +35 V; 0V < V _{CC} < 5.25 V	-2.5	-	+2.5	mA	NO IMPACT (Note 2)
I _{o(reces)} (CANL)	Recessive output current at pin CANL	–35 V < V _{CANL} < +35 V; 0 V < V _{CC} < 5.25 V	-2.5	-	+2.5	mA	NO IMPACT (Note 2)
I _{LI(CANH)}	Input leakage cur- rent to pin CANH	0 Ω < R(V _{CC} to GND) < 1 MΩ V _{CANL} = V _{CANH} = 5 V	-10	0	10	μΑ	NO IMPACT

Values based on design and characterization, not tested in production
The performance is dominantly defined by the same IP like used in NCV7351 and NCV7342 where supply range is guaranteed and characterized from 4.5 V to 5.5 V

ELECTRICAL CHARACTERISTICS V_{CC} = 4.75 V to 5.25 V; V_{IO} = 2.8 V to 5.5 V (NCV7349–3 only); T_J = –40 to +150°C; R_{LT} = 60 Ω unless specified otherwise. On chip versions without V_{IO} pin, reference voltage for all digital inputs and outputs is V_{CC} instead of V_{IO} .

Symbol	Parameter Conditions		Min	Тур	Max	Unit	Impact of extended supply range of 4.5 V to 5.5 V on V _{CC} pin
BUS LINES (Pins CANH and CANL	_)					·
I _{LI(CANL)}	Input leakage cur- rent to pin CANL	$\begin{array}{l} 0 \; \Omega < R(V_{CC} \; to \; GND) < \\ 1 \; M\Omega \\ V_{CANL} = V_{CANH} = 5 \; V \end{array}$	-10	0	10	μΑ	NO IMPACT
V _{o(dom)} (CANH)	Dominant output voltage at pin CANH	$V_{TxD} = 0 V$	2.75	3.5	4.5	V	Valid for: 50Ω < R _{LT} < 65 Ω. Guaranteed by design. Covered by corner simulations. (Limits changed according to ISO11898–2 [2])
V _{o(dom)} (CANL)	Dominant output voltage at pin CANL	$V_{TxD} = 0 V$	0.5	1.5	2.25	V	Valid for: 50Ω < R _{LT} < 65 Ω. Guaranteed by design. Covered by corner simulations. (Limits changed according to ISO11898–2 [2])
V _{o(dif)} (bus_dom)	Differential bus output voltage (V _{CANH} – V _{CANL})	V _{TxD} = 0 V; dominant; 45 Ω < R _{LT} < 65 Ω	1.5	2.25	3.0	V	Valid for: $50\Omega < R_{LT} < 65 \Omega$. Guaranteed by design. Covered by corner simulations. This is fully in line with ISO11898–2 [2] which defines 1.5V minimum level for R _{LT} larger than 50Ω
V _{o(dif)} (bus_rec)	Differential bus output voltage (V _{CANH} – V _{CANL})	V _{TxD} = V _{IO} ; recessive; no load	-120	0	+50	mV	NO IMPACT (Note 2)
I _{o(sc)} (CANH)	Short circuit output current at pin CANH	$V_{CANH} = 0 V; V_{TxD} = 0 V$	-100	-70	-45	mA	Guaranteed by design. Covered by corner simulations.
I _{o(sc)} (CANL)	Short circuit output current at pin CANL	V _{CANL} = 36 V; V _{TxD} = 0 V	45	70	105	mA	Guaranteed by design. Covered by corner simulations. Max value 5% impacted.
V _{i(dif)} R (th)	Differential re- ceiver threshold voltage – Domi- nant to Recessive	-2 V < V _{CANL} < +7 V; -2 V < V _{CANH} < +7 V;	0.5	0.6	0.7	V	NO IMPACT (Derived from internal reference)
V _{i(dif)} D (th)	Differential re- ceiver threshold voltage – Reces- sive to Dominant	-2 V < V _{CANL} < +7 V; -2 V < V _{CANH} < +7 V;	0.7	0.8	0.9	V	NO IMPACT (Derived from internal reference)
V _{ihcmR(dif)} (th)	Differential re- ceiver threshold voltage – Domi- nant to Recessive	–35 V < V _{CANL} < +35 V; –35 V < V _{CANH} < +35 V;	0.4	-	0.8	V	NO IMPACT (Derived from internal reference)
VihcmD(dif) (th)	Differential re- ceiver threshold voltage – Reces- sive to Dominant	–35 V < V _{CANL} < +35 V; –35 V < V _{CANH} < +35 V;	0.6	-	1	V	NO IMPACT (Derived from internal reference)
VihcmD12(dif) (th)	Differential re- ceiver threshold voltage – Both transitions	–12 V < V _{CANL} < +12 V; –12 V < V _{CANH} < +12 V;	0.5	-	0.9	V	NO IMPACT (Derived from internal reference)
V _{i(dif)} (hys)	Differential re- ceiver input volt- age hysteresis	-2 V < V _{CANL} < +7 V; -2 V < V _{CANH} < +7 V;	100	200	300	mV	NO IMPACT (Derived from internal reference)
V _{i(dif)} (th)_STDBY	Differential re- ceiver threshold voltage in standby mode	–12 V < V _{CANL} < +12 V; –12 V < V _{CANH} < +12 V;	0.4	0.8	1.15	V	NO IMPACT (Derived from internal reference)

1. Values based on design and characterization, not tested in production

The performance is dominantly defined by the same IP like used in NCV7351 and NCV7342 where supply range is guaranteed and characterized from 4.5 V to 5.5 V

ELECTRICAL CHARACTERISTICS V_{CC} = 4.75 V to 5.25 V; V_{IO} = 2.8 V to 5.5 V (NCV7349–3 only); T_J = -40 to +150°C; R_{LT} = 60 Ω	
unless specified otherwise. On chip versions without V _{IO} pin, reference voltage for all digital inputs and outputs is V _{CC} instead of V _{IO} .	

Symbol Parameter		Conditions	Min	Тур	Max	Unit	Impact of extended supply range of 4.5 V to 5.5 V on V _{CC} pin
BUS LINES (Pins CANH and CANL	-)					
R _{i(cm)} (CANH)	Common-mode input resistance at pin CANH		15	26	37	kΩ	NO IMPACT
R _{i(cm)} (CANL)	Common-mode input resistance at pin CANL		15	26	37	kΩ	NO IMPACT
R _{i(cm) (m)}	Matching between pin CANH and pin CANL common mode input resis- tance	V _{CANH} = V _{CANL}	-3	0	+3	%	NO IMPACT
R _{i(dif)}	Differential input resistance		25	50	75	kΩ	NO IMPACT
C _{i(CANH)}	Input capacitance at pin CANH	V _{TxD} = V _{IO} ; (Note 1)	-	-	30	pF	NO IMPACT
$C_{i(CANL)}$	Input capacitance at pin CANL	V _{TxD} = V _{IO} ; (Note 1)	-	-	30	pF	NO IMPACT
C _{i(dif)}	Differential input capacitance	V _{TxD} = V _{IO} ; (Note 1)	-	3.75	10	pF	NO IMPACT
THERMAL S	HUTDOWN					-	
T _{J(sd)}	Shutdown junction temperature	Junction temperature rising	150	170	185	°C	NO IMPACT
TIMING CHA	RACTERISTICS						
$t_{d(TxD-BUSon)}$	Delay TxD to bus active	C _i = 100 pF between CANH to CANL	-	50	-	ns	NA
$t_{d(TxD-BUSoff)}$	Delay TxD to bus inactive	C _i = 100 pF between CANH to CANL	-	60	-	ns	NA
t _{d(BUSon-RxD)}	Delay bus active to RxD	C _{RxD} = 15 pF	-	60	-	ns	NA
td(BUSoff-RxD)	Delay bus inactive to RxD	C _{RxD} = 15 pF	-	60	-	ns	NA
t _{pd}	Propagation delay TxD to RxD (NCV7349–0 ver- sion)	C _i = 100 pF between CANH to CANL	-	125	230 (255)	ns	NO IMPACT in range from 4.75V to 5.5V for max level. Design guranteed to stay within ISO11898–2 [2] for full extended voltage range from 4.5V. ISO limit in bracket.
	Propagation delay TxD to RxD (NCV7349–3 ver- sion)	$C_i = 100 \text{ pF}$ between CANH to CANL	-	130	250 (255)	ns	NO IMPACT in range from 4.75V to 5.5V for max level. Design guranteed to stay within ISO11898–2 [2] for full extended voltage range from 4.5V. ISO limit in bracket.
t _{d(stb-nm)}	Delay standby mode to normal mode		5	8	20	μs	Guaranteed by design. Covered by corner simulations.
							This parameter is not required by ISO11898–2.
t _{wake}	Dominant time for wake-up via bus		0.5	2.5	5	μS	Guaranteed by design. Covered by corner simulations.
t _{dwakerd}	Delay to flag wake event (recessive to dominant transi- tions)	Valid bus wake–up event, C _{RxD} = 15 pF	1	4.5	10	μS	Guaranteed by design. Covered by corner simulations. This parameter is not required by ISO11898–2.

Values based on design and characterization, not tested in production
The performance is dominantly defined by the same IP like used in NCV7351 and NCV7342 where supply range is guaranteed and characterized from 4.5 V to 5.5 V

ELECTRICAL CHARACTERISTICS V_{CC} = 4.75 V to 5.25 V; V_{IO} = 2.8 V to 5.5 V (NCV7349–3 only); T_J = –40 to +150°C; R_{LT} = 60 Ω unless specified otherwise. On chip versions without V_{IO} pin, reference voltage for all digital inputs and outputs is V_{CC} instead of V_{IO} .

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	Impact of extended supply range of 4.5 V to 5.5 V on V _{CC} pin				
TIMING CHA	TIMING CHARACTERISTICS										
t _{dwaked} r	Delay to flag wake event (dominant to recessive tran- sitions)	Valid bus wake–up event, C _{RxD} = 15 pF	0.5	_	7	μs	Guaranteed by design. Covered by corner simulations. This parameter is not required by ISO11898–2.				
twake(RxD)	Minimum pulse width on RxD	5 μs tWAKE, CRxD = 15 pF	0.5			μs	Guaranteed by design. Covered by corner simulations. This parameter is not required by ISO11898–2.				
t _{dom} (TxD)	TxD dominant time for time-out	V _{TxD} = 0 V	1.2	2.6	4	ms	Guaranteed by design. Covered by corner simulations. This parameter is not required by ISO11898–2.				

1. Values based on design and characterization, not tested in production

2. The performance is dominantly defined by the same IP like used in NCV7351 and NCV7342 where supply range is guaranteed and characterized from 4.5 V to 5.5 V

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Velio Certification

NCV7349 was tested for Velio compliance. This test was provided for 3 power supply options. VCC_min = 4.75 V, VCC_typ = 5 V and VCC_max = 5.25 V.

In the table below is the summary of the results and assessment on supply range sensitivity.

NCV7349 VELIO EVALUATION SUMMARY

	Criteria			Results		Note		
Section	Subject	Min	Max	Unit	Vcc_min	Vcc_typ	Vcc_max	
3.1	Output Differential Capacitance		30	pF	-	20,91	_	No VCC effect
3.2.1	Transceiver Delay							
3.2.1.1	Transmitter Delay (R>D)		140	ns	50,156	47,453	45,188	Negligible VCC effect
3.2.1.2	Transmitter Delay (D>R)		140	ns	57,109	56,219	55,734	Negligible VCC effect
3.2.1.3	Receiver Delay (R>D)		140	ns	74,078	72,078	70,609	Negligible VCC effect
3.2.1.4	Receiver Delay (D>R)		140	ns	72,500	70,891	70,000	Negligible VCC effect
3.3.1	dV/dt characteristic							
3.3.1.1	dV/dt characteristic (D>R), Ron		50	Ω	-	29,82	_	No VCC effect
3.3.1.1	dV/dt characteristic (D>R)	5	See grap	h	See graph			
3.3.1.2	dV/dt characteristic (R>D)	0,	See grapl	h	See graph			
3.3.2	R>D Distortion Delay		37	ns	10,779	11,170	11,685	Negligible VCC effect
3.3.3	D>R Distortion Delay		587	ns	146,33	145,154	144,7	Negligible VCC effect
3.4.1	Static response of threshold voltage							
3.4.1.1	V_Thresh dom-rec	No	judgeme	ent	-	_	-	_
3.4.1.2	V_Thresh rec-dom	0,7	0,9	V	0.857/ 0.878	0.860/ 0.877	0.861/ 0.877	Negligible VCC effect
3.4.2	Frequency response of threshold voltage	See graph				See graph		Positive VCC effect – Lower VCC –> Higher margin
3.5.1	Single Ended S–Parameter S11–S22		0,03	-	-	Max 0.01	_	No VCC effect

Conclusion

NCV7349 can be safely used from 4.5 V to 5.5 V. Most of the parameters are guaranteed as stated in the datasheet. Few CAN parameters have small limitations versus NCV7349 datasheet [1] but still being in accordance with CAN ISO norm [1].

Velio testing performed on the device in the range of 4.75 V to 5.25 V is based on the analysis of the report well extendable to the range of 4.5 V to 5.25 V.

Referenced Documents

- 1. NCV7349 datasheet, December, 2014 Rev. 1, www.onsemi.com
- 2. ISO11898–2, DRAFT international standard, ISO/TC 22/SC 31, 2015, 17th December

ON Semiconductor and the trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor roducts, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates the stand/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products haves, admages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with suc

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative